Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells to Aid Search for New Drugs in Hard-to-Treat Conditions

Published: Monday, December 10, 2012
Last Updated: Monday, December 10, 2012
Bookmark and Share
StemBANCC consortium aims to derive 1,500 stem cell lines from 500 patients across eight diseases.

Stem cells are to be used in a £45m effort to look at providing new treatments for a host of complex conditions affecting large numbers of people, including Alzheimer's, Parkinson's, autism and diabetes.

However, it’s not the stem cells themselves that would form the new treatments. Instead, the stem cells would provide a platform to transform the process of discovering new drugs.

A Europe-wide consortium of over 20 universities and 10 pharmaceutical companies, led by Oxford University and Roche, is to generate a giant resource of stem cells derived from patients' skin or blood cells.

The StemBANCC consortium aims to derive 1,500 stem cell lines from 500 patients across eight diseases, using the techniques developed by Japanese scientist Shinya Yamanaka that saw him win a share of this year’s Nobel Prize for Physiology or Medicine.

'This has been shown for two or three patients for several indications; the proof of concept is there,' says Martin Graf, StemBANCC coordinator and head of Roche's Stem Cell Platform in Basel, Switzerland, explaining the scale of the project. 'We now plan to create 1,500 iPS cell lines from 500 patients.'

The researchers will then be able to use the 'induced pluripotent' stem cells, or iPS cells, to generate different tissue types - nerve cells, heart muscle, blood vessels, liver or pancreas cells, etc - against which drug compounds can be screened.

Testing drug candidates from the start in cells derived from patients - and so are directly relevant to the disease - will be much more relevant for coming up with effective treatments, the researchers say.

This approach to drug discovery could be particularly important in the diseases the researchers are interested in, where it has proved so difficult to come up with new treatments and where the pharmaceutical industry's most promising new drug candidates have often failed in late-stage trials.

'It’s the perfect platform for finding drugs. It's superior because we are looking directly at human cells from the patient, capturing the genetic complexity of the disease,' says Dr Zameel Cader, a consultant neurologist at the University of Oxford and principal scientist of StemBANCC.

Currently, many drugs fail late on in development because the tests used in the initial stages simply do not reflect what happens when the drug is administered in patients.

It is largely standard to screen compounds in lab cell lines that are often amenable to study but are nothing like cells in patients. Promising compounds then go into studies in animals before small-scale safety trials in humans look at safety.

It is only in larger trials, and after many millions of pounds have been spent, that it becomes apparent that the drugs have little or no effect in patients.

'The drug discovery process is flawed and isn't working. It needs reshaping, and stem cells may help provide this,' says Dr Cader.

StemBANCC would provide a good supply of cells directly from patients that 'recapitulate' the disease in the lab, and against which compounds can be tested from the start, the researchers say.

Heart, kidney and liver cells would also allow toxicological screens to help spot potential side effects early.

Dr Cader explains: 'The generation of the [stem cell] bank is the easy part, relatively speaking. The harder part is to show we can identify abnormalities [in the cell lines] relevant to disease.

'We believe we will be able to see abnormalities that are there in the disease. It will be hard. But if we find them, it will be superb. We can then apply [drug] compounds into our assays [lab-based tests] and see if these compounds correct the cellular abnormalities.'

The consortium will generate iPS cells from groups of patients with the following conditions: Alzheimer's, Parkinson's, autism, schizophrenia, bipolar disorder, migraine, chronic pain and diabetes.

The intention is to make the cell lines generally available to researchers help to improve the discovery of new drugs for these hard-to-treat conditions.

'Because the stem cells can be expanded indefinitely, we can essentially produce an infinite number of these patient-derived cells to work with,' explains Dr Sally Cowley of Oxford University. 'They can be stored, shipped around the world, and potentially made accessible to any researcher anywhere.'

Dr Cowley, who runs the stem cell facility at the Oxford Stem Cell Institute, part of the Oxford Martin School, adds: 'People may be working with these cell lines for decades, if we do it right.'

The €55.6 million funding over five years is made up of €26 million from the European Union's Innovative Medicines Initiative and €21 million in 'in kind' contributions from the participating drug firms in the European pharmaceutical industry association EFPIA. Contributions from other sources make up the rest.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Funding Boost for Diabetes Research
Programme of research could be a game-changer for people with Type 1 diabetes and insulin-dependent Type 2 diabetes.
Friday, July 24, 2015
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
One-two Combination Floors Cancer
A new tag-team approach to combating a type of skin cancer is showing early promise in the lab.
Wednesday, June 26, 2013
Oxford, Harvard Scientists Lead Data-Sharing Effort
New standards allow disparate data sets to integrate, allowing behind-the-scenes combination of the mountains of data produced by modern, technology driven science.
Tuesday, January 31, 2012
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!