Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Study Suggests Gene Variation May Shape Bladder Cancer Treatment

Published: Thursday, January 03, 2013
Last Updated: Wednesday, January 02, 2013
Bookmark and Share
Study appeared in the Journal of the National Cancer Institute.

Patients who have inherited a specific common genetic variant develop bladder cancer tumors that strongly express a protein known as prostate stem cell antigen (PSCA), which is also expressed in many pancreatic and prostate tumors, according to research at the National Institutes of Health.

A therapy targeting the PSCA protein on the tumor cell surface is under evaluation in clinical trials for prostate and pancreatic cancer.

The researchers hope that this therapy will be tested in bladder cancer patients with the genetic variant, which could help to reduce potentially harmful side-effects, lower costs, and improve treatment efficacy.

Every gene contains a very long string of DNA components termed nucleotides (referenced commonly as T, C, G or A). A single letter variation in the string of letters can lead to changes in cell development, resulting in cancer.

In a previous study, the researchers identified a variant located in the PSCA gene on chromosome 8 as associated with bladder cancer susceptibility.

The gene determines whether the corresponding protein is expressed in bladder tumor tissue. In the latest report, they found that the 'T' nucleotide that comprises a gene variant called rs2294008 is a strong predictor of PSCA protein expression.

The variant results in increased delivery of the protein to the cell surface, where it is involved in signaling and promotes tumor growth.

The study by scientists from the National Cancer Institute (NCI), part of the National Institutes of Health, appeared in the Journal of the National Cancer Institute on Jan. 3, 2013.

"We've been pursuing this mechanism for some time now. It started with our early results from the initial genome-wide association study that revealed a marker in the PSCA gene related to bladder cancer risk. This latest work reveals how a specific letter change in DNA influences protein expression at the cell surface. The big payoff is that a simple genetic test can determine which patients could benefit from anti-PSCA therapy," said Ludmila Prokunina-Olsson, Ph.D., NCI Division of Cancer Epidemiology and Genetics, and senior author of this publication.

In 2012 in the United States alone, there were an estimated 73,510 new cases of bladder cancer and 14,880 deaths.

The recurrence rate of bladder cancer is between 50 and 70 percent, and patients require life-long surveillance and treatment, making it an expensive cancer to live with and a major economic burden on the health care system and patients.

Up to 75 percent of bladder cancer patients carry this genetic variant.

"This is one of the first studies to show direct clinical implications of a genetic variant identified through genome-wide association studies for common cancers," said Stephen J. Chanock, M.D., acting co-director for the NCI Center for Cancer Genomics.

The scientists note that additional work is needed to develop alternative drugs targeting PSCA, and to evaluate drug delivery methods, such as systemic delivery for advanced muscle-invasive tumors and local, inter-bladder delivery in the case of non-muscle invasive tumors.

Anti-PSCA therapy is likely to be effective only against tumors that express PSCA. A genetic test for the "T" nucleotide of this genetic variant can identify bladder cancer patients who could benefit from this treatment.

This research was supported by intramural funding at the NCI under contract number ZIA CP010201-04.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Stem Cells Form Light-Sensitive 3-D Retinal Tissue
Researchers induced human stem cells to create a 3-D retina structure that responds to light. The finding may aid the study of eye diseases and could eventually lead to new therapies.
Tuesday, June 24, 2014
Stem Cell Therapy Rebuilds Heart Muscle in Primates
Human embryonic stem cells used to regenerate damaged primate hearts.
Tuesday, May 13, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
NeuroBioBank Gives Researchers One-Stop Access to Post-Mortem Brains
The NIH is shifting from a limited funding role to coordinating a Web-based resource for sharing post-mortem brain tissue, a move which is expected to expedite research on brain disorders.
Tuesday, December 03, 2013
Gene-Silencing Study Finds New Targets for Parkinson’s Disease
NIH study sheds light on treatment of related disorders.
Monday, November 25, 2013
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
NIH Scientists Pursue New Therapies to Improve Rare Disease Drug Development
Projects selected for potential to treat specific rare diseases.
Friday, September 13, 2013
Stem Cells Discovered in Deadly Parasitic Flatworms
The study was described in Nature on February 28, 2013.
Friday, March 15, 2013
New Type of Pluripotent Cell Discovered In Adult Breast Tissue
Human body carries personalized “patch kit," Say UCSF scientists.
Tuesday, March 05, 2013
Scientific News
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos