Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Stem Cell Approach for Blindness Successful in Mice

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
Researchers transplant developing cells into mice eyes and re-form the entire light-sensitive layer of the retina.

Blind mice can see again, after Oxford University researchers transplanted developing cells into their eyes and found they could re-form the entire light-sensitive layer of the retina.

Videos show the nocturnal mice, which once didn't notice the difference between light and dark at all, now run from the light and prefer to be in the dark - just like mice with normal vision.

The researchers say the approach has relevance for treating patients with retinitis pigmentosa, a condition in which the light-sensing cells in the retina gradually die leading to progressive blindness.

The study was led by Professor Robert MacLaren in the Nuffield Department of Clinical Neurosciences at the University of Oxford, together with Dr Mandeep Singh, an eye surgeon from the National University Hospital of Singapore who is currently undertaking PhD studies in Oxford. The findings are published online in the journal PNAS.

The researchers worked with mice that are blind due to complete loss of the light-sensing photoreceptor cells in their retinas. This is the most relevant mouse model for treating patients who are blind from retinitis pigmentosa.

After two weeks, the researchers showed the cells transplanted into the eye had re-formed a full light-detecting layer on the retina and the mice could see.

The cells used were mouse 'precursor' cells that are on an initial path towards developing into retinal cells.

A pupil constriction test showed that, of the 12 mice that received the cell transplant, 10 showed improved pupil constriction in response to light. This shows that the retinas of the mice were sensing the light once more, and this was being transmitted down the optic nerve to the brain.

Dr Singh says: 'We found that if enough cells are transplanted together, they not only become light sensing but they also regenerate the connections required for meaningful vision.'

Professor MacLaren explains: 'Stem cells have been trialled in patients to replace the pigmented lining of the retina, but this new research shows that the light-sensing layer might also be replaced in a similar way. The light-sensing cells have a highly complex structure and we observed that they can resume function as a layer and restore connections after transplantation into the completely blind retina.'

In looking forward towards potential cell treatments for blindness in humans, Professor MacLaren explains that they would like to use induced pluripotent stem cells, or iPS cells. These are stem cells that have been generated from the patient’s own cells, such as skin or blood cells, and can then be directed to form precursors of the retina cells.

Professor MacLaren says that this has been achieved by others: 'All the steps are there for doing this in patients in the future.' The next step is to find a reliable source of cells in patients that can provide the stem cells for use in such transplants, he says.

While these are more long-term developments to work towards, Professor MacLaren says 'Our study shows what we could achieve with a cell-based approach.'

'We have shown the transplanted cells survive, they become light-sensitive, and they connect and reform the wiring to the rest of the retina to restore vision,' he says. 'The ability to reconstruct the entire light sensitive layer of the retina using cell transplantation is the ultimate goal of the stem cell treatments for blindness we are all working towards.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Switch Controls How Stem Cells Turn Into New Heart Tissue
The scientists identified a protein called Fgf as the controlling factor which determines whether developing heart cells become heart muscle or blood vessels.
Tuesday, July 26, 2011
New Gene Discovered in Human Stem Cells may Benefit Transplant Patients
Oxford scientists have uncovered that the gene Nephroblastoma Overexpressed plays a key role in regulating the production of blood from stem cells.
Tuesday, May 01, 2007
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!