Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Hamilton Robotics Safeguards Precious Blood Transfers

Published: Tuesday, January 22, 2013
Last Updated: Tuesday, January 22, 2013
Bookmark and Share
Company launches Microlab® easyBlood STARlet workstation.

Hamilton Robotics this week introduced the easyBlood STARlet™ workstation, a fully automated system for blood fractionation in biobanking applications, at the annual Society of Laboratory Automation and Screening meeting.

The easyBlood STARlet workstation effectively eliminates error-prone manual pipetting steps and increases the safety of precious biobanking samples with state-of-the-art imaging technology, excellent pipetting capabilities, and powerful sample tracking software.

The easyBlood system is a high-throughput, fully integrated workstation that enables technicians to reliably pipet the desired layer of primary blood samples, including the buffy coat. The system is compatible with laboratory information management systems (LIMS), offers full traceability by ensuring that data can be linked confidently to each sample, and enables a seamless biobanking workflow.

The easyBlood STARlet system is manufactured in Hamilton’s Bonaduz, Switzerland facility and is based on the compact Hamilton Robotics Microlab® STARlet platform. The world-leading Hamilton STAR line of instruments offers laboratories the greatest flexibility in liquid handling application design, including heating and cooling devices, multi-channel heads, and HEPA hoods. The easyBlood STARlet workstation offers customers the ability to fractionate blood from a multitude of primary sample tubes to a variety of 2D-barcoded and storage-ready target containers found in today’s biobanks.

The comprehensive easyBlood STARlet system includes all required components and software  for reading and loading barcoded, decapped samples and additional labware such as plates and pipette tips. The instrument's high-resolution, camera-based fraction identification detects difficult targets, such as buffy coats and gel separators in centrifuged samples. The system provides complete control and monitoring of the pipetting process with software-enabled adjustment of pipetting speed to suit specific liquid classes. All three fractions (plasma, buffy coat, and red blood cells) are pipetted and aliquoted as desired.

The easyBlood workstation also integrates with the new, -80°C BiOS™ third-generation automated storage system, which was designed for sample integrity and superior service.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hamilton Storage Technologies Opens 52,000-Square-Foot Facility in Franklin, Massachusetts
Innovative open floor plan helps life science business address growing market demands.
Tuesday, January 22, 2013
Automation of Adherent Cell Culture Maintenance
Hamilton, Life & Brain and University of Bonn will jointly develop a system for the automated culture of primary cells, cell lines and embryonic stem cells.
Monday, May 14, 2007
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos