Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Altering Eye Cells May One Day Restore Vision

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Doctors may one day treat some forms of blindness by altering the genetic program of the light-sensing cells of the eye.

Working in mice with retinitis pigmentosa, a disease that causes gradual blindness, the researchers reprogrammed the cells in the eye that enable night vision. The change made the cells more similar to other cells that provide sight during daylight hours and prevented degeneration of the retina, the light-sensing structure in the back of the eye. The scientists now are conducting additional tests to confirm that the mice can still see.

“We think it may be significantly easier to preserve vision by modifying existing cells in the eye than it would be to introduce new stem cells,” says senior author Joseph Corbo, MD, PhD, assistant professor of pathology and immunology. “A diseased retina is not a hospitable environment for transplanting stem cells.”

The study is available in the early online edition of Proceedings of the National Academy of Sciences.

Mutations in more than 200 genes have been linked to various forms of blindness. Efforts are underway to develop gene therapies for some of these conditions.

Rather than seek treatments tailored to individual mutations, Corbo hopes to develop therapies that can alleviate many forms of visual impairment. To make that possible, he studies the genetic factors that allow cells in the developing eye to take on the specialized roles necessary for vision.

The retina has two types of light-sensing cells or photoreceptors. The rods provide night vision, and the cones sense light in the daytime and detect fine visual details.

In retinitis pigmentosa, the rods die first, leaving patients unable to see at night. Daytime vision often remains intact for some time until the cones also die.

Corbo and others have identified several genes that are active in rods or in cones but not in both types of photoreceptors. He wondered whether turning off a key gene that is activated only in rods could protect the cells from the loss of vision characteristic of retinitis pigmentosa.

’“The question was, when retinitis pigmentosa is caused by a mutation in a protein only active in rods, can we reduce or stop vision loss by making the cells less rod-like?” he explains.

The new study focuses on a protein known as Nrl, which influences development of photoreceptors. Cells that make Nrl become rods, while cells that lack the protein become cones. Turning off the Nrl gene in developing mice leads to a retina packed with cone cells.

To see if this rod-to-cone change was possible in adult mice, Corbo created a mouse model of retinitis pigmentosa with an Nrl gene that could be switched on and off by scientists.

“In adult mice, switching off Nrl partially converts the rod cells into cone cells,” he says. “Several months later, when the mutant mice normally had very little vision left, we tested the function of their retina.”

The test showed a healthier level of electrical activity in the retinas of mice that lacked Nrl, suggesting that the mice could still see.

Corbo now is looking for other critical development factors that can help scientists more fully transform adult rods into cones. He notes that if complete conversion of rods to cones were possible, this therapy could also be helpful for conditions where cone cells die first, such as macular degeneration.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Insulin-secreting Cells from Stem Cells
Stem cells from diabetic patients coaxed to become insulin-secreting cells. If damaged cells are replaceable, type 1 diabetics wouldn't need insulin shots.
Wednesday, May 11, 2016
New Center Focuses on Regenerative Medicine
A new center has been formed at Washington University School of Medicine in St. Louis to facilitate research that explores the regenerative properties of cells and tissues.
Thursday, December 17, 2015
Stem Cells Lurking In Tumors Can Resist Treatment
Researchers at Washington University School of Medicine in St. Louis are studying how cancer stem cells make tumors harder to kill and are looking for ways to eradicate these treatment-resistant cells.
Monday, March 16, 2015
Scientific News
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Biobank Storage Time Affects Blood Test Results
Study finds storage time of blood samples at a biobank may affect test results as much as patient age.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!