Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Diabetes Distresses Bone Marrow Stem Cells by Damaging their Microenvironment

Published: Friday, February 01, 2013
Last Updated: Friday, February 01, 2013
Bookmark and Share
New research has shown the presence of a disease affecting small blood vessels, known as microangiopathy, in the bone marrow of diabetic patients.

While it is well known that microangiopathy is the cause of renal damage, blindness and heart attacks in patients with diabetes, this is the first time that a reduction of the smallest blood vessels has been shown in bone marrow, the tissue contained inside the bones and the main source of stem cells.

These precious cells not only replace old blood cells but also exert an important reparative function after acute injuries and heart attacks.  The starvation of bone marrow as a consequence of microangiopathy can lead to a less efficient healing in diabetic patients. Also, stem cells from a patient’s bone marrow are the most used in regenerative medicine trials to mend hearts damaged by heart attacks.  Results from this study highlight an important deficit in stem cells and supporting microenvironment that can reduce stem cells’ therapeutic potential in diabetic patients.

The research team, led by Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine in the School of Clinical Sciences and Bristol Heart Institute at the University of Bristol, investigated the effect of diabetes on bone marrow stem cells and the nurturing of small blood vessels in humans.

The new study, published in the American Heart Association journal Circulation Research, was funded by the British Heart Foundation (BHF).

The researchers have shown a profound remodelling of the marrow, which shows shortage of stem cells and surrounding vessels mainly replaced by fat, especially in patients with a critical lack of blood supply to a tissue (ischaemia).  This means that, as peripheral vascular complications progress, more damage occurs in the marrow. In a vicious cycle, depletion of bone marrow stem cells worsens the consequences of peripheral ischaemia.

Investigation of underpinning mechanisms revealed that exposure of bone marrow stem cells to the high glucose level typical of diabetes mellitus impacts on “microRNAs”, which are tiny RNA molecules controlling gene expression and hence biological functions.  In particular, microRNA-155, that normally controls the production of stem cells, becomes dramatically reduced in bone marrow cells exposed to high glucose. Diabetes-induced deficits are corrected by reintroducing microRNA-155 in human stem cells. The authors foresee that microRNAs could be used to regain proper stem cells number in diabetes and fix stem cells before reintroduction into a patient's body.

Professor Paolo Madeddu said: “Our study draws attention to the bone marrow as a primary target of diabetes-induced damage.  The research suggests that the severity of systemic vascular disease has an impact on bone marrow causing a precocious senescence of stem cells.  More severe bone marrow pathologies can cause, or contribute to, cardiovascular disease and lead to worse outcomes after a heart attack, through the shortage of vascular regenerative cells.  Clinical evidence indicates that achieving a good control of glucose levels is fundamental to prevent vascular complications, but is less effective in correcting microangiopathy.  We need to work hard to find new therapies for mending damaged microvessels.”

Professor Costanza Emanueli, Chair of Vascular Pathology and Regeneration at the University of Bristol and co-author of the paper, added: “MicroRNAs represent an attractive means to repair the marrow damage and generate “better” stem cells for regenerative medicine applications.  We are working at protocols using microRNA targeting for enhancing the therapeutic potential of stem cells before their transplantation to cure heart and limb ischaemia, which are often associated with diabetes mellitus.  More work is, however, necessary before using this strategy in patients.”

The findings advance the current understanding of pathological mechanisms leading to collapse of the vascular niche and reduced availability of regenerative cells.  The data provides a key for interpretation of diabetes-associated defect in stem cell mobilisation following a heart attack. In addition, the research reveals a new molecular mechanism that could in the future become the target of specific treatments to alleviate vascular complications in patients with diabetes.

Professor Jeremy Pearson, Associate Medical Director at the BHF said: “Professor Madeddu and his team have shown for the first time that the bone marrow in patients with diabetes can’t release stem cells which are important for the repair of blood vessel damage commonly found in people with the disease.

“If we could restore the ability of the marrow to release stem cells there is potential to reduce the effects of diabetes, and prevent the devastating consequences of the condition such as blindness and amputation. Understanding more about injured blood vessel repair will also aid in the fight to mend hearts damaged after a heart attack, a vital research area we fund through our Mending Broken Hearts Appeal.’


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Deciphering the Role of Fat Stem Cells in Obesity and Diabetes
New study will examine stem cells to pinpoint how excess fat is stored, potentially paving the way for new treatments to combat obesity-linked diseases.
Wednesday, May 21, 2014
Human Neural Stem Cells Could Meet the Clinical Problem of Critical Limb Ischemia
New research has shown human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels.
Monday, November 25, 2013
Silk and Cellulose Biologically Effective for Use in Stem Cell Cartilage Repair
Over 20 million people in Europe suffer from osteoarthritis which can lead to extensive damage to the knee and hip cartilage.
Wednesday, May 08, 2013
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!