Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3D Printed Human Organs for Testing and Transplantation

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Process could pave the way to purpose-built replacement organs for patients, eliminating the need for organ donation, immune suppression and the problem of transplant rejection.

The process, developed at Heriot-Watt University, in partnership with Roslin Cellab, takes advantage of the fact that stem cells can now be grown in laboratory conditions from established cell lines, could also speed up and improve the process of drug testing by growing three-dimensional human tissues and structures for pharmaceuticals to be tested on.

New valve-based technique

A range of human stem cell cultures can now be grown, generation after generation, in laboratory conditions. Those cultures developed from cells from areas like bone marrow or skin are hardier but less flexible than those developed from embryonic material. While 3D printing of the tougher cell cultures has been achieved before, the new valve-based technique developed by Dr Will Shu and his colleagues at Heriot-Watt's Biomedical Microengineering group are the first to print the more delicate embryonic cell cultures, which have an ability to replicate indefinitely and differentiate into almost any cell type in the human body.

Dr Shu said, “To the best of our knowledge, this is the first time that these cells have been 3D printed. The technique will allow us to create more accurate human tissue models which are essential to in vitro drug development and toxicity-testing. Since the majority of drug discovery is targeting human disease, it makes sense to use human tissues.

“In the longer term, we envisage the technology being further developed to create viable 3D organs for medical implantation from a patient’s own cells, eliminating the need for organ donation, immune suppression and the problem of transplant rejection.”

Dr Shu's team are working with Roslin Cellab, a leading stem cell technology company. The company has a good track record of applying new technologies to human stem cell systems and will take the lead in developing 3D stem cell printing for commercial uses. Initially this will be in the areas of novel drug-testing products but in the longer term there is the goal of growing purpose-built replacement organs.

Valuable long-term implications

Jason King, business development manager of Roslin Cellab, said, "This world-first printing of human embryonic stem cell cultures is a continuation of our productive partnership with Heriot-Watt. Normally laboratory grown cells grow in 2D but some cell types have been printed in 3D. However, up to now, human stem cell cultures have been too sensitive to manipulate in this way.

"This is a scientific development which we hope and believe will have immensely valuable long-term implications for reliable, animal-free drug-testing and, in the longer term to provide organs for transplant on demand, without the need for donation and without the problems of immune suppression and potential organ rejection."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Rapidly Generating Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!