Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Physicists Crack Science of Ice Formation

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Salt - and just about anything else that dissolves in water, which is called a solute - lowers water's melting point, which is why it's useful for de-icing roads.

And the higher the solute concentration, the slower ice forms. That's why solutes, or "cryoprotectants," are added to proteins, cells, tissues and even dead bodies to slow down ice formation during cryopreservation.

Intrigued by this rather poorly understood process, Cornell physicists have discovered that, for a variety of common cryoprotectants, the time for ice to form has a simple exponential variation with concentration. It's the first molecular-level understanding of exactly how solutes slow down ice formation, and it has implications in fields ranging from climate physics to cryopreservation and artificial insemination.

Matthew Warkentin, a physics postdoctoral associate, together with professors of physics Robert Thorne and James Sethna, published these findings online in Physical Review Letters in January.

Ice forms in supercooled pure water in about 1 microsecond (one-millionth of one second). That time gets multiplied by 10 for every incremental increase in solute concentration. In a 50 percent glycerol-water solution, for example, ice formation can take almost a minute.

The simple exponential behavior suggested that there might be a correspondingly simple explanation, Warkentin said.

In order for ice to form, a small cluster of about 50 water molecules must form a crystalline "nucleus"; a smaller cluster will tend to shrink and disappear, but larger clusters will keep growing as long as liquid water is available. The researchers postulated that the solute molecules "get in the way" of water molecules trying to form a nucleus.

By calculating the probability of finding a nucleus-size volume free of the solute molecules that were preventing nucleation, they derived the exponential dependence on solute concentration and were able to quantitatively replicate data for eight different solutes, ranging from salt to sugar to alcohol. The resulting simple theory used statistical mechanics to extend classical nucleation theory.

In looking at the implications of the work for climate change, for example, Thorne said that modern climate models must take into account a measure of the Earth's reflectiveness, which is influenced by cloud cover. This in turn requires understanding of when and why cloud particles crystallize or remain liquid.

Furthermore, cryopreservation is widely used in medicine and biotechnology, where ice formation can be lethal to cells and tissues. Fertility clinics routinely freeze sperm, eggs and fertilized embryos, and nearly all domestic cattle and swine are propagated using cryopreserved semen, Thorne said.

Aside from its simplicity, an exciting feature of the new theory is that it is generalizable to other liquids and to any system undergoing nucleation, the researchers added.

The work was supported by the National Science Foundation and the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer Cells 'Talk' to their Environment, and it Talks Back
Scientists from Cornell University have developed a novel microscopy technique to measure the force breast cancer cells exert on their surroundings.
Wednesday, November 23, 2016
Turn out the Light: 'Switch' Determines Cancer Cell Fate
Like picking a career or a movie, cells have to make decisions – and cancer results from cells making wrong decisions.
Friday, May 03, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Puppy Born from Frozen Embryo Fetches Good News
Breakthrough shows hope for endangered canids.
Tuesday, February 05, 2013
Some Stem Cells Can Trigger Tumors
When in contact with even trace amounts of cancer cells, stem cells can create a microenvironment suitable for more tumors to grow.
Wednesday, June 06, 2012
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Allen Institute Releases Gene Edited Human Stem Cell Lines
The Allen Cell Collection, a publicly available collection of gene edited pluripotent stem cells, has been made available by the Allen Institute.
Designer Cell Fate Switches Could Streamline Stem Cell Biology
Researchers develop new method of reprogramming cells between cell types in a more efficient way than before.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Defining Immortality of Stem Cells
Researchers defined the mechanisms underlying increased protein quality control of pluripotent stem cells.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!