Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Physicists Crack Science of Ice Formation

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Salt - and just about anything else that dissolves in water, which is called a solute - lowers water's melting point, which is why it's useful for de-icing roads.

And the higher the solute concentration, the slower ice forms. That's why solutes, or "cryoprotectants," are added to proteins, cells, tissues and even dead bodies to slow down ice formation during cryopreservation.

Intrigued by this rather poorly understood process, Cornell physicists have discovered that, for a variety of common cryoprotectants, the time for ice to form has a simple exponential variation with concentration. It's the first molecular-level understanding of exactly how solutes slow down ice formation, and it has implications in fields ranging from climate physics to cryopreservation and artificial insemination.

Matthew Warkentin, a physics postdoctoral associate, together with professors of physics Robert Thorne and James Sethna, published these findings online in Physical Review Letters in January.

Ice forms in supercooled pure water in about 1 microsecond (one-millionth of one second). That time gets multiplied by 10 for every incremental increase in solute concentration. In a 50 percent glycerol-water solution, for example, ice formation can take almost a minute.

The simple exponential behavior suggested that there might be a correspondingly simple explanation, Warkentin said.

In order for ice to form, a small cluster of about 50 water molecules must form a crystalline "nucleus"; a smaller cluster will tend to shrink and disappear, but larger clusters will keep growing as long as liquid water is available. The researchers postulated that the solute molecules "get in the way" of water molecules trying to form a nucleus.

By calculating the probability of finding a nucleus-size volume free of the solute molecules that were preventing nucleation, they derived the exponential dependence on solute concentration and were able to quantitatively replicate data for eight different solutes, ranging from salt to sugar to alcohol. The resulting simple theory used statistical mechanics to extend classical nucleation theory.

In looking at the implications of the work for climate change, for example, Thorne said that modern climate models must take into account a measure of the Earth's reflectiveness, which is influenced by cloud cover. This in turn requires understanding of when and why cloud particles crystallize or remain liquid.

Furthermore, cryopreservation is widely used in medicine and biotechnology, where ice formation can be lethal to cells and tissues. Fertility clinics routinely freeze sperm, eggs and fertilized embryos, and nearly all domestic cattle and swine are propagated using cryopreserved semen, Thorne said.

Aside from its simplicity, an exciting feature of the new theory is that it is generalizable to other liquids and to any system undergoing nucleation, the researchers added.

The work was supported by the National Science Foundation and the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Turn out the Light: 'Switch' Determines Cancer Cell Fate
Like picking a career or a movie, cells have to make decisions – and cancer results from cells making wrong decisions.
Friday, May 03, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Puppy Born from Frozen Embryo Fetches Good News
Breakthrough shows hope for endangered canids.
Tuesday, February 05, 2013
Some Stem Cells Can Trigger Tumors
When in contact with even trace amounts of cancer cells, stem cells can create a microenvironment suitable for more tumors to grow.
Wednesday, June 06, 2012
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!