Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Discovered in Deadly Parasitic Flatworms

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
The study was described in Nature on February 28, 2013.

The flatworms that cause the tropical disease schistosomiasis can live and reproduce inside infected humans for decades. In a new study, researchers identified the stem cells that may be responsible.

The discovery could lay the groundwork for new strategies to treat the devastating disease caused by the parasite.

Schistosomiasis, also known as bilharzia or snail fever, primarily affects people living in the tropical regions of developing countries.

Children who are repeatedly infected can develop anemia, malnutrition and learning difficulties. After years of infection, the parasite can damage the liver, intestine, lungs and bladder.

Rarely, it can also cause seizures, paralysis or spinal cord inflammation. More than 200 million people have this disease and more than 700 million people are at risk of infection.

Microscopic Schistosoma parasites infect people who are wading, swimming or bathing in freshwater inhabited by infected snails. The parasites, known as schistosomes, burrow into human skin and then grow inside blood vessels.

Female worms produce eggs that can travel to the intestine, liver, bladder or other organs. The eggs can be released back into the water through urine or feces, starting the cycle again.

Dr. Phillip Newmark and colleagues at the University of Illinois have spent years studying flatworms. They knew that planarians, non-parasitic worms popular in biology classrooms, have a type of stem cell known as a neoblast.

Neoblasts allow planarians to regenerate damaged organs and body parts. The scientists wondered whether schistosomes might have a similar type of stem cell.

Their study, described in Nature on February 28, 2013, was funded in part by NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and National Institute of Allergy and Infectious Diseases (NIAID).

The scientists used a labeling technique to identify a population of cells from schistosomes that was able to grow and divide. They found that these cells had a distinct structure and pattern of gene expression similar to neoblasts.

When the researchers used a fluorescent marker to tag the cells, they detected the marker in new cells 3 days later. This ability to divide and produce new cells is a key characteristic of stem cells.

The scientists injected schistosome-infected mice with a marker to look at the pattern of tagged cells at several time points. They located the tag in intestinal cells and in body wall muscle cells of the parasite after 7 days. This revealed that the cells could turn into different types of cells (differentiate), another key behavior of stem cells.

The team next turned their attention to signal pathways that might exist within these stem cells. Using their knowledge of planarians, they focused on the fibroblast growth factor (FGF) receptor family, which is expressed in proliferating planarian cells.

They identified a gene, SmfgfrA, in the adult stem cells that codes for the parasite’s version of a FGF receptor. Using a technique called RNA interference (RNAi), they turned off the gene and found that it’s required for maintenance of the stem cells in the worm.

“We started with the big question: How does a parasite survive in a host for decades?” says Newmark. “That implies that it has ways of repairing and maintaining its tissues. This study gives us insight into the really interesting biology of these parasites, and it may also open up new doors for making their life cycle a lot shorter.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Stem Cells Form Light-Sensitive 3-D Retinal Tissue
Researchers induced human stem cells to create a 3-D retina structure that responds to light. The finding may aid the study of eye diseases and could eventually lead to new therapies.
Tuesday, June 24, 2014
Stem Cell Therapy Rebuilds Heart Muscle in Primates
Human embryonic stem cells used to regenerate damaged primate hearts.
Tuesday, May 13, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
NeuroBioBank Gives Researchers One-Stop Access to Post-Mortem Brains
The NIH is shifting from a limited funding role to coordinating a Web-based resource for sharing post-mortem brain tissue, a move which is expected to expedite research on brain disorders.
Tuesday, December 03, 2013
Scientific News
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Rapid Generation from Stem Cells
Researchers coax human stem cells to rapidly generate bone and heart muscle by directing stem cells down complex developmental pathways.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!