Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

EMD Millipore Launches OsteoMAX-XF™, a Fully-defined, Xeno-free Mesenchymal Stem Cell Osteogenic Differentiation Medium

Published: Thursday, May 09, 2013
Last Updated: Thursday, May 09, 2013
Bookmark and Share
Enables rapid differentiation of fully functional human bone tissue from MSCs. More consistent and potent than currently available formulations . Accelerates time to mineralization to less than one week compared to the typical three weeks.

EMD Millipore and Plasticell have announced the availability of OsteoMAX-XF™, the first fully defined, xeno-free human mesenchymal stem cell differentiation medium for the differentiation of mesenchymal stem cells into osteocytes.  Mineralization can be detected in less than one week, whereas competing products that contain serum require approximately 21 days to produce similar levels of bone formation.

The formulation, licensed from Plasticell, produces more consistent and potent osteogenic differentiation than currently available formulations, enabling a more reproducible, efficient method for creating bone tissue and advancing research in bone disease and healing.  EMD Millipore manufactures and distributes the medium globally for research purposes while Plasticell retains all rights over therapeutic applications.

“This unique media formulation will help accelerate research in a wide range of bone related diseases such as osteoporosis,” noted Nick Asbrock, stem cell product manager at EMD Millipore.  “Researchers will now be able to derive bone tissue from MSCs in a more rapid and consistent manner.”

The OsteoMAX-XF™ differentiation media adds to EMD Millipore’s comprehensive portfolio of mesenchymal stem cell products including primary human and rat mesenchymal stem cell lines, expansion media, antibodies, characterization kits, growth factors and ECM proteins.

The optimized, single application osteogenic medium was developed using Plasticell’s combinatorial screening system that performed a rapid screen of 3,375 combinations of fully defined cell culture media, equivalent to hundreds of thousands of combinations of media components.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

EMD Millipore and Sistemic Collaborate
Companies jointly developing kits for quality control of in vitro stem cell cultures.
Friday, November 02, 2012
Scientific News
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Genome Engineering Paves Way For Sickle Cell Cure
Researchers from UC Berkeley have used CRISPR-Cas9 gene editing to fix the mutated gene responsible for sickle cell disease.
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Link Between Heart and Blood Cells in Early Development Found
Researchers have identifed a key factor in determining the fate of early undifferentiated cells during development.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scientists Speed Up Muscle Repair
Researchers discovered genetically modified mice were able to support far more regenerative stem cells, for muscle repair, than previously thought.
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos