Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NYSCF Scientists Create Personalized Bone Substitutes from Skin Cells

Published: Thursday, May 09, 2013
Last Updated: Thursday, May 09, 2013
Bookmark and Share
For treatment of large bone defects and traumatic injuries.

A team of New York Stem Cell Foundation (NYSCF) Research Institute scientists report today the generation of patient-specific bone substitutes from skin cells for repair of large bone defects. The study, led by Darja Marolt, PhD, a NYSCF-Helmsley Investigator and Giuseppe Maria de Peppo, PhD, a NYSCF Research Fellow, and published in the Proceedings of the National Academy of Sciences of the USA, represents a major advance in personalized reconstructive treatments for patients with bone defects resulting from disease or trauma.

This advance will facilitate the development of customizable, three-dimensional bone grafts on-demand, matched to fit the exact needs and immune profile of a patient. Taking skin cells, the NYSCF scientists utilized an advanced technique called “reprogramming” to revert adult cells into an embryonic-like state. These induced pluripotent stem (iPS) cells carry the same genetic information as the patient and they can become any of the body’s cell types.

The NYSCF team guided these iPS cells to become bone-forming progenitors and seeded the cells onto a scaffold for three-dimensional bone formation. They then placed the constructs into a device called a bioreactor, which provides nutrients, removes waste, and stimulates maturation, mimicking a natural developmental environment.

“Bone is more than a hard mineral composite, it is an active organ that constantly remodels. Blood vessels shuttle important nutrients to healthy cells and remove waste; nerves provide connection to the brain; and, bone marrow cells form new blood and immune cells,” said Marolt.

Previous studies have demonstrated the bone-forming potential from other cell sources, yet serious caveats for clinical translation remain. A patient’s own bone marrow stem cells can form bone and cartilaginous tissue, not the underlying vasculature and nerve compartments; and, embryonic stem cell derived bone may prompt an immune rejection. The NYSCF scientists chose to work with iPS cells to overcome these limitations, comparing iPS sources with embryonic stem cells and bone marrow derived cells.

“No other research group has published work on creating fully-viable, functional, threedimensional bone substitutes from human iPS cells. These results bring us closer to achieving our ultimate goal, to develop the most promising treatments for patients,” said de Peppo.

While severity varies, bone defects and injuries are currently treated with bone grafts, taken either from another part of the patient’s body or a donor bone bank, or with synthetic substitutes. None of these permit complex reconstruction, and they may elicit immune rejection or fail to integrate with surrounding connective tissues. For trauma patients, suffering from shrapnel wounds or vehicular injury, these traditional treatments provide limited functional and cosmetic improvement.

After a comprehensive in vitro analysis of the generated bone, the NYSCF team assessed stability when transplanted in an animal model to address a major concern for iPS-based cell therapies. Undifferentiated iPS cells can form teratomas, a type of tumor. The iPS cellderived bone substitutes were implanted under the skin of immunocompromised mice. After 12 weeks, the explanted constructs matured and showed no malignancies but complete maturation of bone tissue, while blood vessel cells began to integrate along the grafts. These results indicate the stability of the bone substitutes.

The scientists caution that although these results represent a major advance, further research is necessary before skin cell-derived bone grafts reach patients. Next steps include protocol optimization and the successful growth of blood vessels within the bone.

“Following from these findings, we will be able to create tailored bone grafts, on demand, for patients without any immune rejection issues,” said Susan L. Solomon, CEO of NYSCF. “This is not a good approach, it is the best approach to repair devastating damage or defects.”

Beyond potential therapeutic relevance, these adaptive bone substitutes may be implemented to model bone development and different pathologies. Analysis could enrich current understanding and identify potential drug targets.

Other contributors to the study include: Dr. David Kahler, Dr. Linshan Shang, and Dana Alsaman of The New York Stem Cell Foundation Research Institute; and Dr. Ivan Marcos Campos and Dr. Gordana Vunjak-Novakovic of Columbia University.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Stem Cells Used to Elucidate Mechanisms of Beta-Cell Failure in Diabetes
Mechanisms that impair insulin production in diabetes identified using a human stem cell model of Wolfram syndrome, a rare form of diabetes.
Tuesday, November 19, 2013
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!