Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Adult Stem Cells Could Hold Key to Creating Cure for Type 1 Diabetes

Published: Tuesday, June 04, 2013
Last Updated: Tuesday, June 04, 2013
Bookmark and Share
Combining bone marrow cells with new drug restores insulin production.

Millions of people with type 1 diabetes depend on daily insulin injections to survive. They would die without the shots because their immune system attacks the very insulin-producing cells it was designed to protect.

Now, a University of Missouri scientist has discovered that this attack causes more damage than scientists realized.

The revelation is leading to a potential cure that combines adult stem cells with a promising new drug.

The discovery is reported in the current online issue of Diabetes, the American Diabetes Association's flagship research publication.

Habib Zaghouani, PhD, J. Lavenia Edwards Chair in Pediatrics, leads the research with his team at the MU School of Medicine.

"We discovered that type 1 diabetes destroys not only insulin-producing cells but also blood vessels that support them," Zaghouani said. "When we realized how important the blood vessels were to insulin production, we developed a cure that combines a drug we created with adult stem cells from bone marrow. The drug stops the immune system attack, and the stem cells generate new blood vessels that help insulin-producing cells to multiply and thrive."

Surrounded by an army of students and a colony of mice, Zaghouani has spent the past 12 years in his lab at MU studying autoimmune diseases like type 1 diabetes.

Often called juvenile diabetes, the disease can lead to numerous complications, including cardiovascular disease, kidney damage, nerve damage, osteoporosis and blindness.

Type 1 diabetes attacks the pancreas. The organ, which is about the size of a hand and located in the abdomen, houses cell clusters called islets.

Islets contain beta cells that make insulin, which controls blood sugar levels. In people with type 1 diabetes, beta cells no longer make insulin because the body's immune system has attacked and destroyed them.

When the immune system strikes the beta cells, the attack causes collateral damage to capillaries that carry blood to and from the islets. The damage done to the tiny blood vessels led Zaghouani on a new path toward a cure.

In previous studies, Zaghouani and his team developed a drug against type 1 diabetes called Ig-GAD2. They found that treatment with the drug stopped the immune system from attacking beta cells, but too few beta cells survived the attack to reverse the disease.

In his latest study, Zaghouani used Ig-GAD2 and then injected adult stem cells from bone marrow into the pancreas in the hope that the stem cells would evolve into beta cells.

"The combination of Ig-GAD2 and bone marrow cells did result in production of new beta cells, but not in the way we expected," Zaghouani said. "We thought the bone marrow cells would evolve directly into beta cells. Instead, the bone marrow cells led to growth of new blood vessels, and it was the blood vessels that facilitated reproduction of new beta cells. In other words, we discovered that to cure type 1 diabetes, we need to repair the blood vessels that allow the subject's beta cells to grow and distribute insulin throughout the body."

Zaghouani is pursuing a patent for his promising treatment and hopes to translate his discovery from use in mice to humans. He is continuing his research with funding from the National Institutes of Health and MU.

"This is extremely exciting for our research team," he said. "Our discovery about the importance of restoring blood vessels has the potential to be applied not only to type 1 diabetes but also a number of other autoimmune diseases."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Transitional Stem Cells Discovered
New stem cells are easier to manipulate, could help future research on reproductive problems.
Friday, April 17, 2015
MU Scientists Successfully Transplant, Grow Stem Cells in Pigs
New line of pigs do not reject transplants, will allow for future research on stem cell therapies.
Saturday, June 07, 2014
Stem Cells Successfully Transplanted and Grown in Pigs
New line of pigs do not reject transplants, which will allow for future research on stem cell therapies.
Thursday, June 05, 2014
Gene, Stem Cell Therapy only needs to be 50 Percent Effective to Create a Healthy Heart, MU Researchers Find
Researchers have demonstrated that a muscular dystrophy patient should be able to maintain a normal lifestyle if only 50 percent of the cells of the heart are healthy.
Thursday, November 01, 2007
Researchers Grow Neural Blood Vessel Cells from Adult Stem Cells
Scientists develop adult stem cells from the blood of an mature animal that were able to be directed into specific cell types.
Monday, September 25, 2006
Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Rapidly Generating Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!