Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Merck Millipore Launches New Medium for the Expansion of Human Stem Cells

Published: Thursday, June 13, 2013
Last Updated: Thursday, June 13, 2013
Bookmark and Share
Enables routine expansion of cells in feeder-free and serum-free conditions.

Merck Millipore has announced the availability of its PluriSTEM™ Human ES/iPS Medium for the routine expansion of human embryonic and induced pluripotent stem cells in feeder- and serum-free conditions with less frequent feeding and cell culture time.

It is the first human ES/iPS media to combine small molecule inhibitors with pluripotent specific growth factors and supplements to enable a less rigorous cell culture regiment. These features save researchers time and lead to lower costs.

The medium consists of fourteen components and is fully defined. The proprietary formulation includes Activin-A, TGFβ1, and b-FGF to promote stem cell self-renewal and potent small molecule combinations to inhibit unwanted spontaneous differentiation, as well as human serum albumin (HSA) to aid in overall colony morphology.

The culture of human ES/iPS cells has traditionally required feeding every day, including weekends, as well as significant technical expertise.

This new medium addresses these challenges by providing an efficient and robust culture method that allows for feeding every other day, excluding weekends, saving both time and money. It also provides high viability and proliferation rates in single cell passaging.

"One of the main difficulties of traditional pluripotent stem cell culture is the time and expense required to achieve a successful undifferentiated culture. Our new PluriSTEM™ medium addresses this challenge by offering a simpler, less time-consuming culturing method," said Nick Asbrock, Stem Cell Product Manager in Merck Millipore's Bioscience business unit.

Asbrock continued, "With the addition of the new medium to our stem cell product portfolio, Merck Millipore now offers a complete workflow solution for human ES and iPS culture systems, including proprietary reprogramming technologies, differentiation, and expansion media and kits for stem cell characterization."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck Millipore Announces Incoming CEO and President
Udit Batra, Ph.D. will be responsible for the organization’s strategic direction to drive growth and product innovation as well as oversight of the worldwide operations.
Tuesday, April 15, 2014
Merck Millipore and CCRM Collaborate to Optimize Conditions for Large-scale Stem Cell Cultivation
Collaboration to deliver optimized methodologies for cultivation of stem cells on microcarriers in Mobius® CellReady bioreactor systems.
Tuesday, March 13, 2012
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos