Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Thermo Scientific Expands Stem Cell Media Offerings

Published: Monday, June 17, 2013
Last Updated: Sunday, June 16, 2013
Bookmark and Share
Yields optimized stem cell growth and expansion per passage to accelerate research and discovery.

Thermo Fisher Scientific Inc. has introduced the Thermo Scientific HyClone HyCell-STEM and HyCell-STEM-FF stem cell culture media, designed to optimize the expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage for cell culture applications including cell signaling, drug discovery and therapeutic research.

The new HyCell-STEM media solutions will be showcased this week at the 11th Annual International Society for Stem Cell Research (ISSCR) conference at the Boston Convention and Exhibition Center, Booth #637.

“There are exciting discoveries being made in the stem cell area today, and researchers demand the highest quality products to increase yields and integrity of their cell cultures,” said Roberta Morris, business director for Thermo Fisher Scientific.

Morris continued, “With the introduction of HyCell-STEM and HyCell-STEM-FF, we are offering researchers solutions that increase the rate of stem cell expansion while preserving cell morphology, stemness and pluripotency. Further, scientists may anticipate outstanding recovery after thaw, following cryopreservation of cells.”

HyCell-STEM is designed for use with stem cells on feeder layer cultures, and HyCell-STEM-FF is designed for stem cells in feeder-free conditions.

Both HyCell-STEM and HyCell-STEM-FF offer an increased expansion rate compared to market competitors based on internal testing, yielding as many as twice the cells on every passage.

HyCell-STEM and HyCell-STEM-FF require no adaptation and hESCs and iPSCs can be thawed or seeded directly into the systems. Additionally, robust hESCs and iPSCs grown in HyCell-STEM do not have to be fed daily, saving time, resources and weekend demands for researchers.

For feeder-free culturing with the HyCell-STEM FF, the need of feeder cells is eliminated entirely, and stem cell culture preparation is simplified. Other key features and benefits of the HyCell-STEM and HyCell-STEM-FF systems include:

• Optimized expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage
• Healthy stem cell morphology demonstrated by tight clustering and smooth borders of cultured cells
• Preservation of stemness and pluripotency over multiple passages
• Superior post-thaw recovery of stem cells from cryopreservation with cells thawed directly in HyCell-STEM or HyCell-STEM-FF yielding more cells faster


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!