Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Thermo Scientific Expands Stem Cell Media Offerings

Published: Monday, June 17, 2013
Last Updated: Sunday, June 16, 2013
Bookmark and Share
Yields optimized stem cell growth and expansion per passage to accelerate research and discovery.

Thermo Fisher Scientific Inc. has introduced the Thermo Scientific HyClone HyCell-STEM and HyCell-STEM-FF stem cell culture media, designed to optimize the expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage for cell culture applications including cell signaling, drug discovery and therapeutic research.

The new HyCell-STEM media solutions will be showcased this week at the 11th Annual International Society for Stem Cell Research (ISSCR) conference at the Boston Convention and Exhibition Center, Booth #637.

“There are exciting discoveries being made in the stem cell area today, and researchers demand the highest quality products to increase yields and integrity of their cell cultures,” said Roberta Morris, business director for Thermo Fisher Scientific.

Morris continued, “With the introduction of HyCell-STEM and HyCell-STEM-FF, we are offering researchers solutions that increase the rate of stem cell expansion while preserving cell morphology, stemness and pluripotency. Further, scientists may anticipate outstanding recovery after thaw, following cryopreservation of cells.”

HyCell-STEM is designed for use with stem cells on feeder layer cultures, and HyCell-STEM-FF is designed for stem cells in feeder-free conditions.

Both HyCell-STEM and HyCell-STEM-FF offer an increased expansion rate compared to market competitors based on internal testing, yielding as many as twice the cells on every passage.

HyCell-STEM and HyCell-STEM-FF require no adaptation and hESCs and iPSCs can be thawed or seeded directly into the systems. Additionally, robust hESCs and iPSCs grown in HyCell-STEM do not have to be fed daily, saving time, resources and weekend demands for researchers.

For feeder-free culturing with the HyCell-STEM FF, the need of feeder cells is eliminated entirely, and stem cell culture preparation is simplified. Other key features and benefits of the HyCell-STEM and HyCell-STEM-FF systems include:

• Optimized expansion rate of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) per passage
• Healthy stem cell morphology demonstrated by tight clustering and smooth borders of cultured cells
• Preservation of stemness and pluripotency over multiple passages
• Superior post-thaw recovery of stem cells from cryopreservation with cells thawed directly in HyCell-STEM or HyCell-STEM-FF yielding more cells faster

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos