Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Shows How the Nanog Protein Promotes Growth of Head and Neck Cancer

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
A protein called Nanog helps the renewal of healthy embryonic stem cells and promotes cancer stem cell proliferation in head and neck cancer.

A new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC–James) has identified a biochemical pathway in cancer stem cells that is essential for promoting head and neck cancer.
The study shows that a protein called Nanog, which is normally active in embryonic stem cells, promotes the growth of cancer stem cells in head and neck cancer. The findings provide information essential for designing novel targeted drugs that might improve the treatment of head and neck cancer.
Normally, Nanog helps healthy embryonic stem cells maintain their undifferentiated, uncommitted (i.e., pluripotent) state. But recent evidence suggests that Nanog promotes tumor growth by stimulating the proliferation of cancer stem cells.
“This study defines a signaling axis that is essential for head and neck cancer progression, and our findings show that this axis may be disrupted at three key steps,” says principal investigator Quintin Pan, PhD, associate professor of otolaryngology at the OSUCCC – James. “Targeted drugs that are designed to inhibit any or all of these three steps might greatly improve the treatment of head and neck cancer.”
The findings were published in a recent issue of the journal Oncogene.
Specifically, the study shows that an enzyme called “protein kinase C-epsilon” (PKCepsilon) adds energy-packing phosphate groups to the Nanog molecule. This phosphorylation of Nanog stabilizes and activates the molecule.
It also triggers a series of events: Two Nanog molecules bind together, and these are joined by a third “co-activating” molecule called p300. This molecular complex then binds to the promoter region of a gene called Bmi1, an event that increases the expression of the gene. This, in turn, stimulates proliferation of cancer stem cells.
“Our work shows that the PKCepsilon/Nanog/Bmi1 signaling axis is essential to promote head and neck cancer,” Pan says. “And it provides initial evidence that the development of inhibitors that block critical points in this axis might yield a potent collection of targeted anti-cancer therapeutics that could be valuable for the treatment of head and neck cancer.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos