Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find Key to Blood-Clotting Process

Published: Wednesday, June 26, 2013
Last Updated: Wednesday, June 26, 2013
Bookmark and Share
Researchers have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.

The research, carried out in collaboration with researchers from the Universities of Homburg and Heidelberg in Germany, the National Institutes of Health in the USA and University College London, focuses on the action of platelets in the blood clotting process.

These platelets are very small cells in our blood that are essential to blood clotting when we damage a blood vessel. Unfortunately, platelet clots can also block blood vessels in the heart, leading to heart attacks.

When blood vessels are damaged they expose the protein collagen and produce thrombin, which then trigger the platelets to create a clot or thrombus.  It has been known for some time that platelets are activated much more strongly if they detect both collagen and thrombin at the same time, but until now it has been a puzzle as how this happens.

Now the research from Bristol and others, which is published today [25 June] in the journal Science Signalling, has shown that platelets respond to simultaneous exposure to these two strong signals by opening a channel in their outer membrane, made up of the proteins TRPC3 and TRPC6.

This channel, which is not opened if platelets detect only one of the damage signals, allows calcium ions to penetrate the platelets and that triggers the platelets to expose a procoagulant surface, which means that they generate more thrombin. This can lead to a vicious cycle of more platelet activation, the generation of more thrombin and bigger clots.

Bristol’s contribution to this research project has been supported by the British Heart Foundation and it’s hoped in the future it could help guide the development of new therapies to control dangerous blood clotting.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
Monday, June 29, 2015
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Micro Heart Muscle Created from Stem Cells
Researchers have designed a new way to create micro heart muscle from stem cells using a unique dog bone dish.
Immune Booster Tested in Advanced Merkel Cell Cancer
The immunotherapy drug produced durable responses in many patients.
Mutated Mitochondria Found in Stem Cells
Researchers find hidden genetic mutations in patient-derived stem cells which could ultimately undermine therapeutic benefit.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!