Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Vitamin C Helps Control Gene Activity in Stem Cells

Published: Wednesday, July 03, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
UCSF-led research finding could lead to improved treatments for cancer, in vitro fertilization.

Vitamin C affects whether genes are switched on or off inside mouse stem cells, suggesting that it could may play a fundamental role in helping to guide normal development in mice, humans and other animals, a team led by UC San Francisco researchers has discovered.

The researchers found that vitamin C assists enzymes that play a crucial role in releasing the brakes that keep certain genes from becoming activated in the embryo soon after fertilization, when egg and sperm fuse.

The discovery might eventually lead to the use of vitamin C to improve results of in vitro fertilization, in which early embryos now are typically grown without the vitamin. It also could help treat cancer, in which tumor cells abnormally engage or release these brakes on gene activation.

The researchers' study was published June 30 in the journal Nature.

In the near term, stem cell scientists may begin incorporating vitamin C more systematically into their procedures for growing the most healthy and useful stem cells, according to UCSF stem cell scientist Miguel Ramalho-Santos, PhD, who led the study. In fact, the unanticipated discovery emerged from an effort to compare different formulations of the growth medium, a kind of nutrient broth used to grow mouse embryonic stem cells in the lab.

A Successful Accident in the Lab

Rather than building on any previous body of scientific work, the identification of the link between vitamin C and the activation of genes that should be turned on in early development was serendipitous, Ramalho-Santos said. “We bumped into this result,” he said.

Working in Ramalho-Santos’ lab, graduate student Kathryn Blaschke and postdoctoral fellow Kevin Ebata, PhD, were comparing different commercial growth media for mouse stem cells. The researchers began exploring how certain ingredients altered gene activity within the stem cells. Eventually they discovered that adding vitamin C led to increased activity of key enzymes that release the brakes that can prevent activation of an array of genes.

The brakes on gene activation that vitamin C helps release are molecules called methyl groups. These methyl groups are added to DNA at specific points along the genome to prevent specific genes from getting turned on.

During the development of multicellular organisms – humans among them – different patterns of methylation arise in different cells as methyl groups are biochemically attached to DNA at specific points along the genome during successive cell divisions. Normally this gradual methylation, a key part of the developmental program, is not reversible.

But after fertilization and during early development, a class of enzymes called “Tet” acts on a wide array of the methyl groups on the DNA to remove these brakes, so that genes can be activated as needed.

The UCSF researchers demonstrated that Tet enzymes require vitamin C for optimal activity as they act to remove the methyl groups from the DNA and to stimulate gene activity that more faithfully mimics in cultured stem cells what occurs at early stages of development in the mouse embryo.

“Potential roles for vitamin C in the clinic — including in embryo culture media used during in vitro fertilization, which currently do not contain vitamin C, and in cancers driven by aberrant DNA methylation — deserve exploration,” Ramalho-Santos, said.

In addition, scientists previously have found that many adult tissues also have stem cells, which can generate a variety of cell types found within a specific tissue. This raises the possibility that vitamin C might help maintain healthy stem cell populations in the adult, according to Ramalho-Santos.

“Although we did not in this paper address the function of Vitamin C in adult tissues, given the roles that Tet enzymes are now known to play in adult tissues, we anticipate that Vitamin C might also regulate Tet function in the adult,” Ramalho-Santos said. “This remains to be determined.”

The Power of Vitamin C

Vitamin C already has become a popular supplement in recent decades, and potential health benefits of vitamin C supplementation continue to be investigated in clinical trials. It has been more than 80 years since vitamin C was first recognized as vital to prevent scurvy, a now-rare connective-tissue disease caused by the failure of another enzyme that also relies on vitamin C.

The function of vitamin C as an antioxidant to prevent chemical damage is the likely reason why some commercial suppliers of growth media have included it in their products, Ramalho-Santos said, but other antioxidant molecules cannot replace Vitamin C in the enhancement of the activity of Tet enzymes.

Despite its importance, humans, unlike most animals and plants, cannot synthesize their own Vitamin C and must obtain it through their diet. The mouse makes vitamin C, but that fact does not diminish the expectation that the new findings will also apply to human development, according to Ramalho-Santos. Only adult liver cells in the mouse make vitamin C, he said.

Ramalho-Santos now aims to explore the newly discovered phenomenon in the living mouse. “The next step is to study vitamin C and gene expression in vivo,” he said.

The UCSF group led a team effort that included researchers from the University of British Columbia, Vancouver, and the La Jolla Institute for Allergy and Immunology, California. The study was funded by the National Institutes of Health, the California Institute of Regenerative Medicine and the Canadian Institutes of Health Research.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Understanding a Protein’s Role in Familial Alzheimer’s
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
$100M gift launches Sanford Stem Cell Clinical Center
T. Denny Sanford has committed $100 million to the creation of the Sanford Stem Cell Clinical Center at the University of California, San Diego.
Wednesday, November 06, 2013
Grafted Limb Cells Acquire Molecular ‘Fingerprint’ of New Location
Findings further creation of regenerative therapies for humans.
Wednesday, October 30, 2013
From Mature Cells to Embryonic-Like Stem Cells
Bioengineers have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage.
Tuesday, October 22, 2013
Researchers Develop Stem Cell Therapies for Acute Lung Injury
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.
Monday, October 21, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Gene Repair Technique Could Have Many Applications
Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Tuesday, August 13, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Scientists Streamline Production of Stem Cells
Researchers report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs).
Friday, August 02, 2013
Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!