Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cell Medica Announces Treatment of First Pediatric Patient in ASPIRE Trial

Published: Tuesday, July 09, 2013
Last Updated: Tuesday, July 09, 2013
Bookmark and Share
ASPIRE Trial expected to complete in early 2015.

Cell Medica has announced the treatment of the first patient in the ASPIRE Trial, an early stage Phase I/II clinical study investigating the safety and efficacy of Cytovir™ ADV for the treatment of adenovirus infections in immunosuppressed pediatric patients following bone marrow transplantation.

The ASPIRE Trial represents a collaborative R&D project among Cell Medica, UCL Institute of Child Health and the Great Ormond Street Hospital for Children.

The project is funded in part by a grant from the Technology Strategy Board, the UK’s innovation agency.

Cytovir ADV is under development as a new way to treat adenovirus infections in pediatric patients following allogeneic hematopoietic stem cell (bone marrow) transplantation.

These patients are profoundly immunosuppressed for a period of three to six months after the procedure and therefore highly vulnerable to serious infections.

In certain high risk pediatric groups following bone marrow transplantation, there is a mortality risk of up to 30% for patients developing adenovirus infections.

No drug is currently approved for the treatment of adenovirus infections in this patient group.

Cytovir ADV is comprised of naturally occurring T lymphocyte cells (T cells) which demonstrate immune response functions when exposed to adenovirus antigens.

The ASPIRE Trial will explore whether adenovirus-specific T cells can be infused in pediatric patients to reconstitute immediate and long-lasting immunity against the virus, thereby potentially avoiding the medical costs, hospitalization and mortality associated with adenovirus infections in this patient group.

The ASPIRE Trial will include up to 15 patients and is expected to complete in early 2015. The Chief Investigator is Dr. Waseem Qasim of the UCL Institute of Child Health.

Extending the pipeline of patient-specific T cell therapies for immune reconstitution
Cytovir ADV is an extension of Cell Medica’s T cell products being investigated for infections in patients following bone marrow transplantation. Cell Medica’s lead product, Cytovir CMV, is currently being tested in two randomized controlled studies across 15 transplantation centres in the UK.

Gregg Sando, CEO of Cell Medica, commented: “The ASPIRE Trial initiates the clinical development of Cytovir ADV in pediatric patients following bone marrow transplantation. Along with Cytovir CMV, we are developing the adenovirus treatment to expand our cell therapy solutions to include two of the most important viral infections in patients following bone marrow transplantation. The clinical research partnership with the UCL Institute of Child Health and the Great Ormond Street Hospital has been very productive in allowing us to identify a high risk group of pediatric patients who could gain particular benefit from an effective and non-toxic antiviral treatment. The support of the Technology Strategy Board was instrumental to provide the platform for this successful collaboration.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!