Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Method Produces Blood Cells from Stem Cells

Published: Monday, July 15, 2013
Last Updated: Monday, July 15, 2013
Bookmark and Share
Method could yield a purer, safer cell therapy.

A new protocol for reprogramming induced pluripotent stem cells (iPSCs) into mature blood cells, using just a small amount of the patient’s own blood and a readily available cell type, is reported on in the current issue of STEM CELLS Translational Medicine.

This novel method skips the generally accepted process of mixing iPSCs with either mouse or human stromal cells during the differentiation process and, in essence, ensures no outside and potentially harmful DNA is introduced into the reprogrammed cells.

A new protocol for reprogramming induced pluripotent stem cells (iPSCs) into mature blood cells, using just a small amount of the patient’s own blood and a readily available cell type, is reported on in the current issue of STEM CELLS Translational Medicine. This novel method skips the generally accepted process of mixing iPSCs with either mouse or human stromal cells during the differentiation process and, in essence, ensures no outside and potentially harmful DNA is introduced into the reprogrammed cells.

As such, it could lead to a purer, safer therapeutic grade of stem cells for use in regenerative medicine.

The discovery of iPSCs holds great promise for regenerative medicine since it is possible to produce patient-specific iPSCs from the individual for potential autologous treatment — that is, treatment using the patient’s own cells. This avoids the possibility of rejection and numerous other harmful side effects.

CD34+ cells are a type of blood stem cell that has been linked to proliferation. However, collecting enough CD34+ cells from a patient to produce an adequate amount of blood usually requires a large volume of blood to be taken from the patient. But scientists found a way around this, as outlined in the new study conducted by researchers in the Department of Medicine and Institute for Human Genetic, University of California-San Francisco. They were led by Yuet Wai Kan, M.D., FRS, and Lin Ye, Ph.D.

“We used Sendai viral vectors to generate iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells (MNCs),” Dr. Kan explained. “Sendai virus is an RNA virus that carries no risk of altering the host genome, so is considered an efficient solution for generating safe iPSC.”

“Just 2 milliliters of blood yielded iPS cells from which hematopoietic stem and progenitor cells could be generated. These cells could contain up to 40 percent CD34+ cells, of which approximately 25 percent were the type of precursors that could be differentiated into mature blood cells. These interesting findings reveal a protocol for the generation iPSCs using a readily available cell type,” Dr. Ye added. “We also found that MNCs can be efficiently reprogrammed into iPSCs as readily as CD34+ cells. Furthermore, these MNCs derived iPSCs can be terminally differentiated into mature blood cells.”

“This method, which uses only a small blood sample, may represent an option for generating iPSCs that maintains their genomic integrity,” said Anthony Atala, MD, Editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “The fact that these cells were differentiated into mature blood cells suggests their use in blood diseases.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Skin Cells Turned into Heart Cells and Brain Cells Using Drugs
In a scientific first, Gladstone researchers have used chemical drugs to convert skin cells into heart cells and brain cells, without adding any external genes.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!