Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Steering Stem Cells with Magnets

Published: Thursday, July 18, 2013
Last Updated: Thursday, July 18, 2013
Bookmark and Share
Magnets could be a tool for directing stem cells’ healing powers to treat conditions such as heart disease or vascular disease.

By feeding stem cells tiny particles made of magnetized iron oxide, scientists at Emory and Georgia Tech can then use magnets to attract the cells to a particular location in a mouse's body after intravenous injection.

The results are published online in the journal Small and will appear in an upcoming issue.
The paper was a result of collaboration between the laboratories of W. Robert Taylor, MD, PhD, and Gang Bao, PhD. Taylor is professor of medicine and biomedical engineering and director of the Division of Cardiology at Emory University School of Medicine. Bao is professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. Co-first authors of the paper are postdoctoral fellows Natalia Landazuri, PhD, and Sheng Tong, PhD. Landazuri is now at the Karolinska Institute in Sweden.

The type of cells used in the study, mesenchymal stem cells, are not embryonic stem cells. Mesenchymal stem cells can be readily obtained from adult tissues such as bone marrow or fat. They are capable of becoming bone, fat and cartilage cells, but not other types of cell such as muscle or brain. They secrete a variety of nourishing and anti-inflammatory factors, which could make them valuable tools for treating conditions such as cardiovascular disease or autoimmune disorders.

Magnetized iron oxide nanoparticles are already FDA-approved for diagnostic purposes with MRI (magnetic resonance imaging). Other scientists have tried to load stem cells with similar particles, but found that the coating on the particles was toxic or changed the cells’ properties.  The nanoparticles used in this study have a polyethylene glycol coating that protects the cell from damage. Another unique feature is that the Emory/Tech team used a magnetic field to push the particles into the cells, rather than chemical agents used previously.

“We were able to load the cells with a lot of these nanoparticles and we showed clearly that the cells were not harmed,” Taylor says. “The coating is unique and thus there was no change in viability and perhaps even more importantly, we didn’t see any change in the characteristics of the stem cells, such as their capacity to differentiate. This was essentially a proof of principle experiment. Ultimately, we would target these to a particular limb, an abnormal blood vessel or even the heart.”

The particles are coated with the nontoxic polymer polyethylene glycol, and have an iron oxide core that is about 15 nanometers across. For comparison, a DNA molecule is 2 nanometers wide and a single influenza virus is at least 100 nanometers wide.

The particles appear to become stuck in cells’ lysosomes, which are parts of the cell that break down waste. The particles stay put for at least a week and leakage cannot be detected. The scientists measured the iron content in the cells once they were loaded up and determined that each cell absorbed roughly 1.5 million particles.

Once cells were loaded with iron oxide particles, the Emory/Tech team tested the ability of magnets to nudge the cells both in cell culture and in living animals. In mice, a bar-shaped rare earth magnet could attract injected stem cells to the tail (see photo). The magnet was applied to the part of the tail close to the body while the cells were being injected. Normally most of the mesenchymal stem cells would become deposited in the lungs or the liver.

To track where the cells went inside the mice, the scientists labeled the cells with a fluorescent dye. They calculated that the bar magnet made the stem cells 6 times more abundant in the tail. In addition, the iron oxide particles themselves could potentially be used to follow cells’ progress through the body.

“Next, we plan to focus on therapeutic applications in animal models where we will use magnets to direct these cells to the precise site need to affect repair and regeneration of new blood vessels,” Taylor says.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos