Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Three Subtypes of Gastric Cancer Suggest Different Treatment Approaches

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
Stomach cancer actually falls into three broad subtypes that respond differently to currently available therapies.

The finding could greatly improve patient care with the development of a genetic test to classify tumors and match them to the therapies that offer the best outcomes.

“One of the features that makes gastric cancer so lethal is that it arises from many genetic alterations, creating differences in how the tumors respond to therapies,” said Steve Rozen, Ph.D., director of the Centre for Computational Biology at Duke-NUS. Rozen is senior author of the study published in the September issue of the journal Gastroenterology. “What our study has shown is that there are actually three distinct molecular classifications that appear to be biologically and therapeutically meaningful.”
Worldwide, only lung cancer is more lethal than stomach cancer. Rates in all countries have been dropping for decades, and are much lower in the United States than in Asia, but the malignancy still afflicts more than 21,000 people in the U.S. a year, according to the National Cancer Institute.
Despite differences in the way their tumors respond to treatments, patients often receive a “one-size-fits-all” treatment approach, resulting in a five-year survival rate of about 27 percent in the United States.
“There has been an urgent need for improved classification of gastric cancer that provides insight into the biology of the tumors that might help predict treatment response,” said co-senior author Patrick Tan, M.D., PhD., professor in the Cancer and Stem Cell Biology Program at Duke-NUS.
Using a technology called microarray-based gene expression profiling, Rozen and colleagues analyzed 248 gastric tumors, then further grouped them according to the genes that were expressed in the tumors.
The gene expression analysis broadly sorts the tumors into three subtypes: proliferative, metabolic and mesenchymal. These subtypes also differ in their genomic and epigenomic properties.
Tumors of the proliferative subtype have high levels of genomic instability and a mutation in the TP53 tumor suppressor gene that occurs in many types of cancers. Cancer cells of the metabolic subtype are more sensitive to the chemotherapy agent 5-FU. Cancer cells of the mesenchymal subtype have some features of cancer stem cells, and are particularly sensitive to a class of therapies called PI3K−AKT−mTOR inhibitors.
“In terms of clinical treatment, there are two promising findings from our research,” Rozen said. “One is that 5-FU has been particularly effective against metabolic- subtype tumors, and the second is that drugs targeting the PI3K−AKT−mTOR pathway may be particularly effective against mesenchymal-subtype cancers.
“If confirmed in future studies, the classification of gastric cancers reported here could guide development of therapies tailored to the molecular subtypes,” said lead author Zhengdeng Lei, PhD.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
3D-Printed Heart-On-A-Chip with Integrated Sensors
Researchers have created the first 3D-printed organ-on-a-chip with integrated sensors, paving the way for more complex, customizable devices.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Genome Engineering Paves Way For Sickle Cell Cure
Researchers from UC Berkeley have used CRISPR-Cas9 gene editing to fix the mutated gene responsible for sickle cell disease.
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Link Between Heart and Blood Cells in Early Development Found
Researchers have identifed a key factor in determining the fate of early undifferentiated cells during development.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scientists Speed Up Muscle Repair
Researchers discovered genetically modified mice were able to support far more regenerative stem cells, for muscle repair, than previously thought.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos