Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

£25m to Kick-Start ‘Industrial Revolution’ in Regenerative Medicine

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
Applications will include Parkinson’s disease, cardiovascular disease, wound and musculoskeletal repair, eye disorders and deafness.

£4.5m will set up a new ‘Hub’ for pluripotent stem cell research as part of the UK Regenerative Medicine Platform (UKRMP), funded by the Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council and the Medical Research Council (MRC). The Hub will work with the other strands of the UKRMP to tackle some of the critical challenges in developing new regenerative treatments from discoveries made in the lab.

A further £20m of capital funding from the MRC will provide state-of-the-art facilities and equipment to support the work of the UKRMP and the wider regenerative medicine research community.

Pluripotent stem cell hub

At the moment, experimental regenerative therapies involve the use of relatively small numbers of cells, usually prepared by laboratory researchers. To be able to treat the thousands of patients who could benefit from regenerative medicine, scientists ultimately need to be able to scale-up these efforts to reliably and repeatedly manufacture thousands of millions of cells under uniform and controlled conditions.

The aim of the Hub is to lay the initial foundations for scaling up the production of cell-based therapies from a ‘cottage industry’ to an industrial scale. It will develop a set of protocols for manufacturing cell therapies that meet the requirements of doctors, regulators and industry and tackle key challenges such as:

  • Making sure cells do not undergo unwanted genetic changes or become contaminated with external agents that may change the way they work.
  • Improving differentiation so that scientists can reliably turn ‘blank’ (pluripotent) cells into the type of cell they want, when they want.
  • Ensuring the right quality control systems are in place so that manufactured cell therapies are safe and suitable for use in human treatments.

Initially they will focus on two disease areas – Parkinson’s disease and deafness – where efforts to develop cell therapies are already well underway. The researchers will work closely with commercial companies from the start to ensure that the procedures they develop are commercially viable.

The Hub will be led by the Universities of Sheffield, Loughborough and Cambridge and builds on existing capabilities within MRC and EPSRC Centres and the UK Stem Cell Bank. It will also collaborate with the Wellcome Trust Sanger Institute and Babraham Institute and will complement the work of the existing UKRMP research Hubs.

Professor Peter Andrews, a stem cell biologist from the Centre for Stem Cell Biology at the University of Sheffield, who will lead the Hub, said:

“Human trials for regenerative therapies based on stem cells are now on the horizon for some conditions, including several forms of blindness. But we’re still a long way off from being able to produce cell therapies for lots of different disease at an industrial scale. The pluripotency hub brings together for the first time in the UK, researchers with the range of expertise necessary to develop the processes needed to take these cells from laboratory-based research to the commercial manufacture of safe, effective and reproducible products for use in regenerative medicine."

Regenerative medicine capital funding

The £20m of capital funding from the MRC will support 12 projects at UK research institutions, many of which are linked to the existing UKRMP hubs. Example awards include:

  • A new £10m laboratory facility, co-funded by the University of Edinburgh, located at the Scottish Centre for Regenerative Medicine. Here scientists will develop an artificial system to simulate the environment that surrounds stem cells in developing organs in the body, called the ‘niche’. The artificial niches will allow researchers to grow stem cells in a more controlled way and turn them into functioning cells that could be used to repair damaged tissue. The new UKRMP Centre for the Computational and Chemical Biology of the Niche will function as a ‘research hotel’, available to all UK regenerative medicine researchers at minimal cost to support the rapid development of innovative new regenerative therapies for patients.
  • Funding for a state-of-the-art ‘cell sorter’ at the UCL Institute of Ophthalmology. In recent years the UCL team has developed a pipeline of candidate cell therapies to treat a range of eye disorders including glaucoma and age-related macular degeneration. This equipment will allow them to identify rapidly the cells they need from a given cell population, providing an important resource to help them move into human trials.
  • Microscopic imaging equipment that will allow an interdisciplinary team of scientists at the University of Southampton to study and observe the 3D architecture of healthy human tissues at a nanometre scale. This will allow them to create accurate artificial scaffolds for growing replacement parts from stem cells for tissues such as cartilage and bone.
  • A 3D printer and other equipment to allow scientists from Imperial College London, Nottingham University and other members of the UKRMP Acellular Hub to develop prototype biomaterials (such as scaffolds) for use in regeneration of human tissues. Potential applications of these 3D ‘smart materials’ include Parkinson's disease, wound regeneration, cartilage repair, treatments of oesophageal cancer and anterior cruciate (knee) ligament operations.

Universities and Science Minister David Willetts said:

“Regenerative medicine has the potential to revolutionise the way in which we deliver therapies for a range of diseases and disorders. This new investment will allow our world-class science and research base to explore ways in which new medicines can be manufactured and commercialised. As one of the eight great technologies and a key part of our life sciences strategy, we believe regenerative medicine has the potential to transform the lives of thousands of patients.”

Dr Rob Buckle, Director of the UKRMP and Head of Regenerative Medicine at the MRC, said:

“Today’s investment through the UKRMP will help us to realise the potential of regenerative medicine to deliver new treatments for patients, while the capital support will provide additional cutting-edge technical capability in this area, helping to develop interdisciplinary programmes that will maintain the UK’s position as a world leader in the field.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Wednesday, July 22, 2015
‘Mini Bile Ducts’ used to Discover New Drugs that could Prevent Liver Damage
An experimental cystic fibrosis drug has been shown to prevent the disease’s damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.
Tuesday, July 14, 2015
3D Tissue Grown from Stem Cells - New Model System for Brain Development
An international team of researchers has used stem cells to create a 3D structure that mimics early human brain development.
Monday, September 02, 2013
New Type of Blood Stem Cell Could Help Solve Platelet Shortage
Scientists have identified a new type of bone marrow stem cell in mice that is primed to produce large numbers of vital blood-clotting platelets.
Tuesday, August 13, 2013
£93 Million Package of Support Announced for UK’s Health Industries
Innovative business and academic projects will benefit from a new £93.2 million package of support.
Wednesday, July 31, 2013
Scientists Transplant Photoreceptors from Retina Grown ‘in a Dish’
Scientists have carried out the first successful transplant of light-sensitive photoreceptor cells taken from a synthetic retina, grown ‘in a dish’ from embryonic stem cells.
Tuesday, July 23, 2013
£20m Boost for UK Regenerative Medicine
The MRC and British Heart Foundation (BHF) announced £20m of funding to boost the development of regenerative medicine therapies.
Thursday, April 11, 2013
Human Brain Research Made Easier by Database
Researchers will be able to access samples from more than 7,000 donated human brains to help study major brain diseases, thanks to a new on-line database, launched by the MRC.
Thursday, March 21, 2013
MRC Delivering on the Life Sciences Strategy, One Year On
The Medical Research Council has made significant progress in implementing the measures outlined in last year’s Strategy for UK Life Sciences, according to a progress update published by the Government.
Tuesday, December 11, 2012
Stem Cells Created from Patient’s Own Blood
Scientists have discovered a patient-friendly and efficient way to make stem cells out of blood, increasing the hope that scientists could one day use stem cells made from patients’ own cells to treat cardiovascular disease.
Tuesday, December 04, 2012
First Randomised Controlled Trial to Show Spinal Cord Regeneration in Dogs
Medical Research Council researchers have shown it is possible to restore co-ordinated limb movement in dogs with severe spinal cord injury (SCI).
Monday, November 19, 2012
International Collaboration Brings Stem Cell Clinical Trials a Step Closer
Funding for two ambitious projects aimed at bringing stem cell treatments to the point of clinical trial has been unveiled by the Medical Research Council (MRC) today.
Friday, October 30, 2009
Setting the Record Straight: Hybrid Embryo Research
The Medical Research Council (MRC) sets the record straight following concerns about the level of investment in hybrid stem cell research, raised on the front page of today’s Independent.
Tuesday, October 06, 2009
MRC welcomes new blueprint for life sciences
A new Blueprint to put innovation at the heart of healthcare delivery in the UK has been launched by Lord Drayson and Lord Darzi at Imperial College London.
Wednesday, July 15, 2009
Virus-free Pluripotency for Human Cells
Scientists have paved the way for stem cells made from skin cells to be safely transplanted into humans – by overcoming one of the main health risks associated with previous techniques.
Monday, March 02, 2009
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos