Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in Primate

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
Study to compare the impact of immune response in autologous transplantation and allogeneic transplantation.

The researchers used cynomolgus monkeys to carry out transplantation into the brain of neural cells derived from iPS cells. Autologous transplantation was found to produce almost no immune reaction and to result in viable neural cells. By contrast, allogeneic transplantation provoked immune reaction by microglia and lymphocytes. The findings of the study has been published in the US scientific journal Stem Cell Reports on September 26, 2012 (US Eastern time).

Parkinson's disease is a progressive and intractable disease of the nervous system in which the loss of dopaminergic neurons in the brain leads to reduced dopamine production, resulting in limb tremor, stiffness causing difficulty in movement, and other symptoms. The therapies applied up till now, based on drugs or electrode treatment, may improve symptoms but have proved unable to halt the depletion of dopaminergic neurons. Hopes have therefore become focused on a therapy with the more radical approach of replacing the lost neural cells through cell transplantation, thereby promoting the formation of new neural pathways to restore brain function. Human iPS cells are looked to as a potential source of the transplant cells.

It is hoped that iPS cells will make it possible to use cells derived from the transplant patients themselves to perform autologous transplantation. If autologous transplantation could allow immune reaction to be avoided, it would also make unnecessary the use of immunosuppressant drugs and avert the risk of side-effects caused by immunosuppression. However, the studies of iPS cell-based autologous transplantation carried out so far, which have used a mouse model, have produced no firm conclusion, with immune reaction observed in some studies but not in others. Moreover, these studies did not involve transplantation of differentiated cells derived from iPS cells in a way that mimicked clinical application. There had thus been no studies directly investigating the effect of autologous transplantation and allogeneic transplantation in primates. This study by Dr. Takahashi's group sought to clarify this area by transplanting dopaminergic neurons prepared from iPS cells into the brains of cynomolgus monkeys and comparing the extent of immune reaction between autologous and allogeneic transplantation.

iPS cells prepared from four cynomolgus monkeys were differentiated into dopaminergic neural cells over a period of 28 days and transplanted into the monkeys' brains, which were observed over a period of approximately three months during which no immunosuppressants were used. The study data show that, in primates, autologous transplantation of iPS cell-derived neural cells produces almost no immune reaction and is superior to allogeneic transplantation in terms of immune reaction control and cell viability.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos