Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellular Dynamics Receives Formal Notice of Grant Award (NGA) for $16 Million Stem Cell Banking Project

Published: Tuesday, November 05, 2013
Last Updated: Tuesday, November 05, 2013
Bookmark and Share
NGA signifies entry into a definitive agreement and initiation of funding.

Cellular Dynamics International announced that the company has received the Notice of Grant Award (NGA) from the California Institute of Regenerative Medicine (CIRM) to create a human induced pluripotent stem cell (iPSC) biobank from 3,000 individuals. Receipt of the NGA signifies the entry into a definitive agreement with CIRM and the initiation of funding for the $16 million project.

CDI will create three iPSC lines for each of 3,000 healthy and diseased donors. Tissue samples will be taken from patients suffering from Alzheimer’s disease, autism spectrum disorders, liver diseases, cardiovascular diseases, neuro-developmental disabilities such as cerebral palsy and infantile epilepsy, diseases of the eye, and/or respiratory diseases. CDI will generate the iPSCs using the episomal reprogramming method first developed by CDI, which reverts the adult cell to a stem cell state without integrating foreign DNA into the cell’s genome. Thus the original biological integrity of the cell is maintained, an important consideration in the study of human disease.

“We are delighted to formally begin this important three-year project. We believe CIRM is building the largest iPSC bank in the world,” said Bob Palay, Chairman and Chief Executive Officer of CDI. “Since CIRM announced the $16 million grant award, we have been constructing our laboratory and iPSC manufacturing facilities in leased space at the Buck Institute for Research on Aging  as well as staffing this facility.  We now look forward to the start of the project where we’ll begin to receive samples and produce the iPSC lines.”

Ellen Feigal, MD, Senior Vice President, Research and Development of CIRM, added, “CIRM’s initiative will provide scientists access to cell lines representing the genetic variety within human diseases such as Alzheimer’s, heart disease, lung fibrosis and autism to discover the nature and causes of underlying human diseases in a way not previously feasible, and accelerate the discovery and development of new therapies.  We look forward to working with CDI in this critical initiative to provide a broad array of relevant human stem cell research materials to scientists in California and worldwide in an effort to revolutionize regenerative medicine research.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

SeouLin Bioscience to Distribute Cellular Dynamics' Products in Korea
SeouLin Bioscience will distribute CDI’s iCell® catalog of products.
Friday, August 21, 2015
Cellular Dynamics to Host Annual iForum™ Meetings
Meetings focused on human iPSC research and applications.
Friday, August 14, 2015
Cord Blood Registry and CDI Announce Collaboration
Collaboration to reprogram newborn stem cells into induced pluripotent stem cells.
Wednesday, January 14, 2015
Using iPSC-derived Cells to Coat Blood Vessels in Kidney Scaffolds
Cellular Dynamics and Northwestern University take first steps toward rebuilding an organ using manufactured human cells.
Tuesday, November 18, 2014
Cellular Dynamics International Reports Third Quarter 2014 Financial Results
Cellular Dynamics International, Inc. reported financial results for the third quarter and nine months ended September 30, 2014.
Tuesday, November 11, 2014
Cellular Dynamics Awarded $1.2 M NEI Contract
Contract will see company develop patient-derived stem cells in gear-up for age-related macular degeneration trial.
Tuesday, October 28, 2014
Cellular Dynamics Awarded NEI Contract
Contract awarded for the development of patient-derived stem cells in gear-up for age-related macular degeneration trial.
Monday, October 27, 2014
Cellular Dynamics Awarded U.S. Patent
Patent strengthens CDI’s position as leading manufacturer of human cells for research and clinical applications.
Friday, August 29, 2014
Cellular Dynamics Awarded Pluripotent Stem Cells Patents
Patents secure CDI’s position as leading manufacturer of human cells from most common, easily accessible donor source for research, drug discovery and regenerative medicine.
Thursday, July 10, 2014
Cellular Dynamics Q4 Revenues Increase 41%
Cellular Dynamics International, Inc. reported financial results for the fourth quarter and for the fiscal year ended December 31, 2013.
Tuesday, March 11, 2014
Cellular Dynamics Signs Agreement with Nestlé Institute of Health Sciences
Agreement will see company to supply iCell® and MyCell® products for nutritional research.
Wednesday, January 08, 2014
The Hamner Institutes and Cellular Dynamics Collaborate
The parties will develop predictive in vitro screening assays for chemical, environmental and pharmaceutical toxicology assessments.
Monday, December 09, 2013
Jain Foundation Signs Agreement with Cellular Dynamics
Company will create iPSC lines from patients with muscular dystrophies for use as disease models for basic research and drug discovery.
Wednesday, December 04, 2013
CDI Reports Third Quarter 2013 Financial Results
Revenues more than double.
Wednesday, November 13, 2013
Cellular Dynamics Issued U.S. Patent
The patent relates to the method by which induced pluripotent stem cells are differentiated into the diverse types of endothelial and hematopoietic cells.
Thursday, October 17, 2013
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!