Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genetic Mutation Increases Risk of Parkinson’s Disease from Pesticides

Published: Thursday, December 05, 2013
Last Updated: Thursday, December 05, 2013
Bookmark and Share
A team of researchers has brought new clarity to the picture of how gene-environmental interactions can kill nerve cells that make dopamine.

Dopamine is the neurotransmitter that sends messages to the part of the brain that controls movement and coordination. Their discoveries, described in a paper published online today in Cell, include identification of a molecule that protects neurons from pesticide damage.

“For the first time, we have used human stem cells derived from Parkinson’s disease patients to show that a genetic mutation combined with exposure to pesticides creates a ‘double hit’ scenario, producing free radicals in neurons that disable specific molecular pathways that cause nerve-cell death,” says Stuart Lipton, M.D., Ph.D., professor and director of Sanford-Burnham’s Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research and senior author of the study.

Until now, the link between pesticides and Parkinson’s disease was based mainly on animal studies and epidemiological research that demonstrated an increased risk of disease among farmers, rural populations, and others exposed to agricultural chemicals.

In the new study, Lipton, along with Rajesh Ambasudhan, Ph.D., research assistant professor in the Del E. Webb Center, and Rudolf Jaenisch, M.D., founding member of Whitehead Institute for Biomedical Research and professor of biology at the Massachusetts Institute of Technology (MIT), used skin cells from Parkinson’s patients that had a mutation in the gene encoding a protein called alpha-synuclein. Alpha-synuclein is the primary protein found in Lewy bodies—protein clumps that are the pathological hallmark of Parkinson’s disease.

Using patient skin cells, the researchers created human induced pluripotent stem cells (hiPSCs) containing the mutation, and then “corrected” the alpha-synuclein mutation in other cells. Next, they reprogrammed all of these cells to become the specific type of nerve cell that is damaged in Parkinson’s disease, called A9 dopamine-containing neurons—thus creating two sets of neurons—identical in every respect except for the alpha-synuclein mutation.

“Exposing both normal and mutant neurons to pesticides—including paraquat, maneb, or rotenone—created excessive free radicals in cells with the mutation, causing damage to dopamine-containing neurons that led to cell death,” said Frank Soldner, M.D., research scientist in Jaenisch’s lab and co-author of the study.

“In fact, we observed the detrimental effects of these pesticides with short exposures to doses well below EPA-accepted levels,” said Scott Ryan, Ph.D., researcher in the Del E. Webb Center and lead author of the paper.

Having access to genetically matched neurons with the exception of a single mutation simplified the interpretation of the genetic contribution to pesticide-induced neuronal death. In this case, the researchers were able to pinpoint how cells with the mutation, when exposed to pesticides, disrupt a key mitochondrial pathway—called MEF2C-PGC1alpha—that normally protects neurons that contain dopamine. The free radicals attacked the MEF2C protein, leading to the loss of function of this pathway that would otherwise have protected the nerve cells from the pesticides.

“Once we understood the pathway and the molecules that were altered by the pesticides, we used high-throughput screening to identify molecules that could inhibit the effect of free radicals on the pathway,” said Ambasudhan. “One molecule we identified was isoxazole, which protected mutant neurons from cell death induced by the tested pesticides. Since several FDA-approved drugs contain derivatives of isoxazole, our findings may have potential clinical implications for repurposing these drugs to treat Parkinson’s.”

While the study clearly shows the relationship between a mutation, the environment, and the damage done to dopamine-containing neurons, it does not exclude other mutations and pathways from being important as well. The team plans to explore additional molecular mechanisms that demonstrate how genes and the environment interact to contribute to Parkinson’s and other neurodegenerative diseases, such as Alzheimer’s and ALS.

“In the future, we anticipate using the knowledge of mutations that predispose an individual to these diseases in order to predict who should avoid a particular environmental exposure. Moreover, we will be able to screen for patients who may benefit from a specific therapy that can prevent, treat, or possibly cure these diseases,” Lipton said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sanford-Burnham and Intrexon Establish Collaboration
Combines Sanford-Burnham Medical Research Institute's renowned scientific team and Intrexon's proprietary discovery platforms to accelerate human induced pluripotent stem cell research.
Friday, January 04, 2013
Scientific News
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos