Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

A*STAR Scientists Discover Novel Hormone Essential for Heart Development

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.

Scientists at A*STAR's Institute of Medical Biology (IMB) and Institute of Molecular and Cellular Biology (IMCB) have identified a gene encoding a hormone that could potentially be used as a therapeutic molecule to treat heart diseases.

The hormone - which they have chosen to name ELABELA - is only 32 amino-acids long, making it amongst the tiniest proteins made by the human body.

The team led by Dr Bruno Reversade carried out experiments to determine ELABELA's function, since its existence was hitherto unsuspected. Using zebrafish designed to specifically lack this hormone, they uncovered that ELABELA is indispensable for heart formation. Zebrafish embryos without this gene had rudimentary or no heart at all. Their results were published in the 5 December 2013 online issue of Developmental Cell.

Deficiencies in hormones are the cause of many diseases, such as the loss of insulin or insulin resistance, that results in diabetes, and irregularities in appetite and satiety hormones that can cause obesity. Hormones are known to control functions such as sleep, appetite and fertility. However, this is the first time that scientists have revealed the existence of a conserved hormone playing such an early role during embryogenesis, effectively orchestrating the development of an entire organ.

The team also found that ELABELA uses a receptor previously believed to be specific to APELIN, a blood-pressure controlling hormone. This receptor called APJ or Apelin Receptor has dual functions - it first conveys signals from ELABELA and then from APELIN. Mutations in the Apelin Receptor also prevent the heart from forming. Zebrafish bereft of the Apelin Receptor are referred to as the Grinch, in reference to the cold and heartless cartoon character created by Dr. Seuss in 1957.

ELABELA has also been found to be expressed in human embryonic stem cells, indicating that it might have other functions beyond its role in cardiovascular development.

The team's findings hold great promise for the potential use of ELABELA as a therapeutic molecule for cardiovascular disease to be used in cardiac repair and control of hypertension. As some people might have a harmful copy of the ELABELA gene in their genetic make-up, sequencing and screening for this particular gene in the general population might also help to detect predisposition to heart anomalies before the disease progresses.

Dr Bruno Reversade said, "The human genome has been sequenced over a decade ago. That we can still find anonymous hormones charms me. There are a still a few more to discover... but not for long."

Prof Birgitte Lane, Executive Director of IMB, said, "This discovery shows great promise for the development of targeted therapies for heart disease and blood pressure control in the future. It is an excellent example of how basic research can lead to surprising and unexpected findings that may change and refine medical practice."

Prof Hong Wan Jin, Executive Director of IMCB, said, "I am very pleased with Bruno's achievement as it reflects the synergy of collaboration and joint efforts among various research institutes in Singapore."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cells Created from a Drop of Blood
The DIY finger-prick technique developed by scientists from A*STAR opens door for extensive stem cell banking.
Thursday, March 20, 2014
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
Scientific News
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos