Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Grant Supports Creation of Patient-Derived Stem Cell Lines

Published: Thursday, December 12, 2013
Last Updated: Thursday, December 12, 2013
Bookmark and Share
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.

Led by Frank LaFerla and Mathew Blurton-Jones, the UCI MIND team will create as many as 40 sets of induced pluripotent stem cells to explore the underlying biology of Alzheimer's disease and test novel therapeutic approaches.

Few discoveries have as much potential to transform modern medical research as iPS cells. They're capable of giving rise to every cell type in the human body, including the key cell types implicated in Alzheimer's disease: neurons, astrocytes and microglia.

Because iPS cells can be generated from patients with a given disease, they offer a powerful new way to study the influence of genetics on disease risk and progression. UCI MIND investigators, who do not use embryonic stem cells, have pioneered this avenue of research specifically for Alzheimer's disease.

"The ability to reprogram cells from adult subjects to make iPS cells is a giant leap forward for science," said LaFerla, UCI MIND director and Chancellor's Professor and chair of neurobiology & behavior. "And we're excited that UCI MIND is at the forefront of using this technology in the battle against Alzheimer's disease."

It's notable that iPS cells can be derived from skin or blood samples. Anyone, even older adults, can easily donate the material needed. Additionally, by harvesting these cells from the patient, transplantation-based therapies could — researchers hope — one day be administered without the need for immunosuppression.

The work funded by the NIA falls under the UCI MIND iPS Cell Bank Initiative, an effort to create a repository of Alzheimer's disease iPS cells that can be accessed by scientists around the world.

The iPS Cell Bank, which will be part of UCI MIND's National Institutes of Health-designated Alzheimer's Disease Research Center, is receiving considerable support through the Keith Swayne Family Challenge.

In honor of his wife, Judy Swayne, who has Alzheimer's disease, Keith Swayne and his family have pledged $150,000 in the form of a challenge. They will match every dollar raised up to $150,000, bringing the total to $300,000 when the challenge is met. These funds will help establish and expand the UCI MIND iPS Cell Bank.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Understanding a Protein’s Role in Familial Alzheimer’s
Researchers have used genetic engineering of human iPSC’s to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD).
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
$100M gift launches Sanford Stem Cell Clinical Center
T. Denny Sanford has committed $100 million to the creation of the Sanford Stem Cell Clinical Center at the University of California, San Diego.
Wednesday, November 06, 2013
Grafted Limb Cells Acquire Molecular ‘Fingerprint’ of New Location
Findings further creation of regenerative therapies for humans.
Wednesday, October 30, 2013
From Mature Cells to Embryonic-Like Stem Cells
Bioengineers have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage.
Tuesday, October 22, 2013
Researchers Develop Stem Cell Therapies for Acute Lung Injury
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.
Monday, October 21, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Gene Repair Technique Could Have Many Applications
Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Tuesday, August 13, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Scientists Streamline Production of Stem Cells
Researchers report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs).
Friday, August 02, 2013
Stem Cell Discovery Furthers Research on Cell-Based Therapy and Cancer
Stem-cell researchers have found a key role for a protein called BMI1 that may help scientists direct the development of tissues to replace damaged organs in the human body.
Monday, July 22, 2013
Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!