Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Involved in Cocaine Response Identified

Published: Tuesday, December 24, 2013
Last Updated: Tuesday, December 24, 2013
Bookmark and Share
UT Southwestern neuroscience researchers have identified the gene by comparing closely related strains of mice often used to study addiction and behavior patterns.

The researchers suspect that the newly identified gene, Cyfip2, determines how mammals respond to cocaine, although it is too soon to tell what the indications are for humans or for addiction, said Dr. Joseph Takahashi, chair of neuroscience and a Howard Hughes Medical Institute investigator at UT Southwestern and the senior author of the study.

The findings, reported in Science, evolved from examining the genetic differences between two substrains of the standard C57BL/6 mouse strain: a “J” strain from the Jackson Laboratory (C57BL/6J) and an “N” strain from the National Institutes of Health (C57BL/6N). Researchers compared the two strains of mice and used their differential responses to cocaine to identify the causative gene.

“We found that the ‘N’ strain has accumulated mutations over time, one of which has a very strong effect on cocaine response,” Dr. Takahashi said. “We propose that CYFIP2 – the protein produced by the Cyfip2 gene – is a key regulator of cocaine response in mammals.”

The Takahashi laboratory has identified about 100 genetic differences that affect protein sequences between the two mouse strains, meaning that there are many genetic differences whose effects are not yet known, he added.

“We identified this gene by first using a forward genetics strategy to search for differences in traits between the two mouse strains. We found a difference in cocaine response between them, with the C57BL/6N strain showing a reduced behavioral response,” Dr. Takahashi said. “We then carried out genetic mapping and whole genome sequencing, which allowed us to pinpoint the Cyfip2 gene as the causative one in a rapid and unambiguous way.”

The C57BL/6J “J” mouse is the gold-standard strain for most research involving the mouse. For example, the reference sequence for the mouse genome, as well as most behavioral and physiological experiments, are based on the “J” strain. However, the International Knockout Mouse Consortium will be shifting emphasis to the “N” strain since they have created 17,000 embryonic stem cell lines with gene mutations that originate from the “N” strain. Thus, identifying genetic differences between these two mouse strains is important, Dr. Takahashi said.

“Although mouse geneticists pay close attention to the specific strains of mice that they use, it has not been generally appreciated that sublines of the same strain of mouse might differ so profoundly. Thus, a ‘C57BL/6’ mouse might appear to be the same, but in fact there are many, many sublines of this laboratory mouse, and it is important to know which exact one you are using. Since the knockout mouse project has produced so many mutations (17,000) derived from the ‘N’ strain, it will be even more important to keep in mind that not all C57BL/6 mice are the same.”

The study was supported by the National Institute on Drug Abuse, by the National Institutes of Health and by the Howard Hughes Medical Institute.

Other UT Southwestern authors include Dr. Vivek Kumar, Instructor; Kyungin Kim, Research Associate; Chryshanthi Joseph, Research Associate; Dr. Saïd Kourrich, Assistant Professor of Psychiatry; and Dr. Hung Chung Huang, Computational Biologist II. Other researchers included Seung-Hee Yoo, former instructor of neuroscience at UT Southwestern and now an assistant professor of biochemistry and molecular biology at UT Health Science Center, Houston; Martha Vitaterna from Northwestern University; Gary Churchill from The Jackson Laboratory; Fernando Pardo-Manuel de Villena from the University of North Carolina at Chapel Hill; and Antonello Bonci from the Intramural Research Program of the National Institute of Drug Abuse / National Institutes of Health.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Reactivate Gene to Rejuvenate Tissue Repair, Identify Gene that Promotes Stem Cell Self-Renewal
Two groups of scientists have made complementary discoveries that break new ground on efforts to turn back the body’s clock on cellular activity.
Tuesday, November 12, 2013
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
iPS Cells Discover Drug Target for Muscle Disease
Researchers have designed a model that reprograms fibroblasts to the early stages of their differentiation into intact muscle cells in a step towards a therapeutic for Duchenne muscular dystrophy.
Engineered Hot Fat Implants Reduce Weight Gain
Scientists at UC Berkeley have developed a novel way to engineer the growth and expansion of energy-burning “good” fat, and then found that this fat helped reduce weight gain and lower blood glucose levels in mice.
Transplanted Stem Cells Can Benefit Retinal Disease Sufferers
Tests on animal models show that MSCs secrete growth factors that suppress causes of diabetic retinopathy and macular degeneration.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Early Detection of Lung Cancer
The University of Manchester has signed a collaboration agreement with Abcodia to perform proteomics studies on a cohort of non-small cell lung cancer cases from the UKCTOCS biobank, with the aim of discovering new blood-based biomarkers for earlier detection of the disease.
Researchers Identify Drug Candidate for Skin, Hair Regeneration
Formerly undiscovered role of protein may lead to the development of new medications that stimulate hair and skin regeneration in trauma or burn victims.
Basis for New Treatment Options for a Fatal Leukemia in Children Revealed
Detailed molecular analyses allow new insights into the function of tumour cells and options for new treatments.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!