Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Culturing iPS cells with Reduced Infection Risk

Published: Wednesday, January 15, 2014
Last Updated: Wednesday, January 15, 2014
Bookmark and Share
Researchers have developed a new way to easily culture induced pluripotent stem cells that has a low risk of infection in transplant therapy.

The team, which includes Kyoto University’s Center for iPS Cell Research and Application, can create a culture system that unlike the existing technique doesn’t have to use animal ingredients, which are at risk of infection, the journal Scientific Reports said Wednesday.

The researchers said in the journal that the new culture system will be vital in speeding up efforts to apply iPS cells in regenerative medicine.

They found that using fragments of a protein called laminin-511, which can stick cells together, enables cells to be stable on culture dishes or plates. With the method, they have created a safer method for producing iPS cells using amino acids and vitamins instead of animal ingredients.

The conventional method for culturing iPS cells has been to graft them on cell culture dishes and used feeder cells or mouse cells and bovine serum-containing medium as nutrients.

But because there are risks to infections in using tissues and cells, which are created from iPS cells under the existing culture system, there is a need to conduct time-consuming safety tests, Scientific Reports said.

They discovered that human iPS cells developed based on this system can also transform into nerve cells that produce neurotransmitter dopamine, insulin-producing cells and blood cells.

The researchers hope the discovery will eventually lead to clinical applications for illnesses such as Parkinson’s disease and diabetes.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bone Marrow Cell Transplants Help Nerve Regeneration
The research carried out at Kyoto University School of Medicine may provide an important step in developing artificial nerves.
Thursday, December 13, 2007
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!