Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find that Estrogen Promotes Blood-Forming Stem Cell Function

Published: Monday, January 27, 2014
Last Updated: Monday, January 27, 2014
Bookmark and Share
Research could provide potential opportunities for improved treatment of blood cancers and enhance the effectiveness of chemotherapy.

Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) and Baylor College of Medicine have found that stem cells in the blood-forming system - which is similar in both sexes - also are regulated differently by hormones, with estrogen proving to be an especially prolific promoter of stem cell self-renewal.

The research, published in Nature, raises several intriguing possibilities for further investigation that might lead to improved treatments for blood cancers and increased safety and effectiveness of chemotherapy.

Before the finding, blood-forming stem cells were thought to be regulated similarly in both males and females, according to the paper’s senior author, Dr. Sean Morrison, Director of CRI, Professor of Pediatrics, and the Mary McDermott Cook Chair in Pediatric Genetics at UT Southwestern Medical Center.

However, while working in Dr. Morrison’s laboratory as postdoctoral fellows, Dr. Daisuke Nakada, the first and co-corresponding author of the study, and Dr. Hideyuki Oguro discovered that blood-forming stem cells divide more frequently in females than in males due to higher estrogen levels.

The research, conducted using mice, demonstrated that the activity of blood-forming stem cells was regulated by systemic hormonal signals in addition to being regulated by local changes within the blood-forming system.

“This discovery explains how red blood cell production is augmented during pregnancy,” said Dr. Morrison. “In female mice, estrogen increases the proliferation of blood-forming stem cells in preparation for pregnancy. Elevated estrogen levels that are sustained during pregnancy induce stem cell mobilization and red cell production in the spleen, which serves as a reserve site for additional red blood cell production.”

The study involved treating male and female mice over a period of several days with amounts of estrogen needed to achieve a level consistent with pregnancy. When an estrogen receptor that is present within blood-forming stem cells was deleted from those cells, they were no longer able to respond to estrogen, nor were they able to increase red blood cell production. The results demonstrate that estrogen acts directly on the stem cells to increase their proliferation and the number of red blood cells they generate.

“If estrogen has the same effect on stem cells in humans as in mice, then this effect raises a number of possibilities that could change the way we treat people with diseases of blood cell-formation,” said Dr. Morrison. “Can we promote regeneration in the blood-forming system by administering estrogen? Can we reduce the toxicity of chemotherapy to the blood-forming system by taking into account estrogen levels in female patients? Does estrogen promote the growth of some blood cancers? There are numerous clinical opportunities to pursue.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Friday, July 22, 2016
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
Friday, November 20, 2015
CRI Scientists See Through Bones
Findings uncover new details about blood-forming stem cells.
Thursday, September 24, 2015
Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Rare Stem Cells in Testis that Hold Potential for Infertility Treatments Identified
Rare stem cells in testis that produce a biomarker protein called PAX7 help give rise to new sperm cells — and may hold a key to restoring fertility, research by scientists at UT Southwestern Medical Center suggests.
Friday, September 05, 2014
Cancer Biologists Link Tumor Suppressor Gene to Stem Cells
The findings appear online in the journal eLife.
Thursday, March 27, 2014
Stem Cell Study Opens Door to Undiscovered World of Biology
Discovery published in Nature measures protein production.
Tuesday, March 11, 2014
Researchers Generate New Neurons in Brains, Spinal Cords of Mammals
Researchers created new nerve cells without the need of stem cell transplants.
Wednesday, February 26, 2014
Bone-marrow Environment Helps Fight Infection
Scientists identify bone-marrow environment that leads to production of infection-fighting T and B cells.
Monday, September 16, 2013
UTSW Researchers Identify New Potential Target for Cancer Therapy
Researchers have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer therapy.
Monday, April 22, 2013
Gene Found that Regenerates Heart Tissue
UT Southwestern researchers identify gene that regenerates heart tissue – critical finding for heart failure prevention.
Thursday, April 18, 2013
UT Southwestern Researchers Identify Mechanism that Maintains Stem Cells
Immune-system receptor maintains stemness of normal adult stem cells and helps leukemia cells growth.
Tuesday, November 27, 2012
Human Melanomas in Mice Predict Skin Cancer
Spread of human melanoma cells in mice correlates with clinical outcomes in patients, UTSW investigators find.
Thursday, November 08, 2012
Scientific News
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!