Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells From Teeth Can Make Brain-Like Cells

Published: Thursday, May 01, 2014
Last Updated: Thursday, May 01, 2014
Bookmark and Share
Stem cells taken from teeth can grow to resemble brain cells, a finding that could be used in the brain as a therapy for stroke.

The University of Adelaide's Centre for Stem Cell Research, laboratory studies have shown that stem cells from teeth can develop and form complex networks of brain-like cells. Although these cells haven't developed into fully fledged neurons, researchers believe it's just a matter of time and the right conditions for it to happen.

"Stem cells from teeth have great potential to grow into new brain or nerve cells, and this could potentially assist with treatments of brain disorders, such as stroke," says Dr Kylie Ellis, Commercial Development Manager with the University's commercial arm, Adelaide Research & Innovation (ARI).

Dr Ellis conducted this research as part of her Physiology PhD studies at the University, before making the step into commercialisation. The results of her work have been published in the journal Stem Cell Research & Therapy.

"The reality is, treatment options available to the thousands of stroke patients every year are limited," Dr Ellis says. "The primary drug treatment available must be administered within hours of a stroke and many people don't have access within that timeframe, because they often can't seek help for some time after the attack.

"Ultimately, we want to be able to use a patient's own stem cells for tailor-made brain therapy that doesn't have the host rejection issues commonly associated with cell-based therapies. Another advantage is that dental pulp stem cell therapy may provide a treatment option available months or even years after the stroke has occurred," she says.

Dr Ellis and her colleagues, Professors Simon Koblar, David O'Carroll and Stan Gronthos, have been working on a laboratory-based model for actual treatment in humans. As part of this research Dr Ellis found that stem cells derived from teeth developed into cells that closely resembled neurons.

"We can do this by providing an environment for the cells that is as close to a normal brain environment as possible, so that instead of becoming cells for teeth they become brain cells," Dr Ellis says.

"What we developed wasn't identical to normal neurons, but the new cells shared very similar properties to neurons. They also formed complex networks and communicated through simple electrical activity, like you might see between cells in the developing brain."

This work with dental pulp stem cells opens up the potential for modelling many more common brain disorders in the laboratory, which could help in developing new treatments and techniques for patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Rapid Generation from Stem Cells
Researchers coax human stem cells to rapidly generate bone and heart muscle by directing stem cells down complex developmental pathways.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Adipose Analysis on Microfluidic Chips
Scientists have developed a microfluidic chip the works with minute liquid quantities to grow and study cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!