Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Stem Cell Therapy Rebuilds Heart Muscle in Primates

Published: Tuesday, May 13, 2014
Last Updated: Tuesday, May 13, 2014
Bookmark and Share
Human embryonic stem cells used to regenerate damaged primate hearts.

Scientists used human embryonic stem cells to regenerate damaged primate hearts. The strategy might one day be used to repair human hearts, but challenges still need to be overcome.

Damage to the heart-such as that caused by a heart attack-isn’t easy to mend. The heart’s muscle cells, called cardiomyocytes, don’t readily replenish themselves. After a typical heart attack, an estimated billion cardiomyocytes die. This jeopardizes heart function and can lead to chronic heart failure and possibly death.

Scientists have been searching for innovative ways to replenish damaged heart tissue. Human embryonic stem cells have proven promising in small animal models. These cells have the potential to develop into any cell type in the body.

Derivatives of the cells are already being tested in people for retinal diseases and spinal cord injury. However, cardiac repair requires much larger numbers of cells. The approaches developed in small animals also need to be tested in larger, more clinically relevant animals.

A research team led by Dr. Charles Murry at the University of Washington set out to test whether an approach they were developing could be scaled up and used in a large animal model. Their work was funded in part by NIH’s National Heart, Lung, and Blood Institute (NHLBI) and National Institute of General Medical Sciences (NIGMS). Results appeared online on April 30, 2014, in Nature.

The team first created cardiomyocytes from human embryonic stem cells that were genetically engineered to produce a fluorescent calcium indicator. This indicator allowed the researchers to track the calcium waves that mark the electrical activity of a beating heart. Pigtail macaques (Macaca nemestrina) with heart damage were treated to suppress their immune systems. Five days later, the cardiomyocytes were delivered in a surgical procedure to the damaged regions and surrounding border zones.

Over a 3-month period, the grafted cells infiltrated damaged heart muscle, matured, and organized into muscle fibers in all the monkeys who received the treatment. On average, the grafts replaced 40% of damaged tissue. Three-dimensional imaging showed that arteries and veins integrated into the grafts, suggesting the grafts could be long lasting. There was no evidence of graft rejection by the animals’ immune systems.

Calcium activity revealed that the grafts were electrically active and coupled to activity of the host heart. Grafts beat along with host muscle at rates of up to 240 beats per minute, the highest rate tested.

All the macaques that received the grafts showed transient arrhythmias-problems with the rate or rhythm of the heartbeat-that subsided by 4 weeks post-transplantation. The animals remained conscious and in no distress during periods of arrhythmia, but this problem will need to be addressed before the approach could be tested in humans.

“Before this study, it was not known if it is possible to produce sufficient numbers of these cells and successfully use them to remuscularize damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart,” Murry says.

While several obstacles still need to be addressed, these experiments support the idea that human cardiomyocyte transplantation therapy may be feasible.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
Wednesday, August 10, 2016
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Monday, August 08, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Scientific News
Genome Engineering Paves Way For Sickle Cell Cure
Researchers from UC Berkeley have used CRISPR-Cas9 gene editing to fix the mutated gene responsible for sickle cell disease.
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Link Between Heart and Blood Cells in Early Development Found
Researchers have identifed a key factor in determining the fate of early undifferentiated cells during development.
Scientists Speed Up Muscle Repair
Researchers discovered genetically modified mice were able to support far more regenerative stem cells, for muscle repair, than previously thought.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
1960s Antibiotics Show Promise for TB Therapy
Research suggests antibiotics introduced in 1963 to treat bacterial infections show promise for tuberculosis therapy.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore the Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos