Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Therapy Rebuilds Heart Muscle in Primates

Published: Tuesday, May 13, 2014
Last Updated: Tuesday, May 13, 2014
Bookmark and Share
Human embryonic stem cells used to regenerate damaged primate hearts.

Scientists used human embryonic stem cells to regenerate damaged primate hearts. The strategy might one day be used to repair human hearts, but challenges still need to be overcome.

Damage to the heart-such as that caused by a heart attack-isn’t easy to mend. The heart’s muscle cells, called cardiomyocytes, don’t readily replenish themselves. After a typical heart attack, an estimated billion cardiomyocytes die. This jeopardizes heart function and can lead to chronic heart failure and possibly death.

Scientists have been searching for innovative ways to replenish damaged heart tissue. Human embryonic stem cells have proven promising in small animal models. These cells have the potential to develop into any cell type in the body.

Derivatives of the cells are already being tested in people for retinal diseases and spinal cord injury. However, cardiac repair requires much larger numbers of cells. The approaches developed in small animals also need to be tested in larger, more clinically relevant animals.

A research team led by Dr. Charles Murry at the University of Washington set out to test whether an approach they were developing could be scaled up and used in a large animal model. Their work was funded in part by NIH’s National Heart, Lung, and Blood Institute (NHLBI) and National Institute of General Medical Sciences (NIGMS). Results appeared online on April 30, 2014, in Nature.

The team first created cardiomyocytes from human embryonic stem cells that were genetically engineered to produce a fluorescent calcium indicator. This indicator allowed the researchers to track the calcium waves that mark the electrical activity of a beating heart. Pigtail macaques (Macaca nemestrina) with heart damage were treated to suppress their immune systems. Five days later, the cardiomyocytes were delivered in a surgical procedure to the damaged regions and surrounding border zones.

Over a 3-month period, the grafted cells infiltrated damaged heart muscle, matured, and organized into muscle fibers in all the monkeys who received the treatment. On average, the grafts replaced 40% of damaged tissue. Three-dimensional imaging showed that arteries and veins integrated into the grafts, suggesting the grafts could be long lasting. There was no evidence of graft rejection by the animals’ immune systems.

Calcium activity revealed that the grafts were electrically active and coupled to activity of the host heart. Grafts beat along with host muscle at rates of up to 240 beats per minute, the highest rate tested.

All the macaques that received the grafts showed transient arrhythmias-problems with the rate or rhythm of the heartbeat-that subsided by 4 weeks post-transplantation. The animals remained conscious and in no distress during periods of arrhythmia, but this problem will need to be addressed before the approach could be tested in humans.

“Before this study, it was not known if it is possible to produce sufficient numbers of these cells and successfully use them to remuscularize damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart,” Murry says.

While several obstacles still need to be addressed, these experiments support the idea that human cardiomyocyte transplantation therapy may be feasible.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
A Patient’s Budding Cortex — In A Dish?
Networking neurons thrive in 3-D human “organoid”
Friday, May 29, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Scientists Sniff Out Unexpected Role for Stem Cells in the Brain
NIH scientists find that restocking new cells in the brain’s center for smell maintains crucial circuitry.
Saturday, October 11, 2014
Suspect Gene Corrupts Neural Connections
“Diseases of synapses” demo’d in a dish - NIH-funded study.
Tuesday, August 19, 2014
Early Treatment Benefits Infants with Severe Combined Immunodeficiency
NIH-funded study identifies factors contributing to successful stem cell transplants.
Friday, August 01, 2014
Stem Cells Form Light-Sensitive 3-D Retinal Tissue
Researchers induced human stem cells to create a 3-D retina structure that responds to light. The finding may aid the study of eye diseases and could eventually lead to new therapies.
Tuesday, June 24, 2014
Too Much Protein May Kill Brain Cells As Parkinson’s Progresses
NIH-funded study on key Parkinson’s gene finds a possible new target for monitoring the disease.
Friday, April 11, 2014
NeuroBioBank Gives Researchers One-Stop Access to Post-Mortem Brains
The NIH is shifting from a limited funding role to coordinating a Web-based resource for sharing post-mortem brain tissue, a move which is expected to expedite research on brain disorders.
Tuesday, December 03, 2013
Gene-Silencing Study Finds New Targets for Parkinson’s Disease
NIH study sheds light on treatment of related disorders.
Monday, November 25, 2013
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
NIH Scientists Pursue New Therapies to Improve Rare Disease Drug Development
Projects selected for potential to treat specific rare diseases.
Friday, September 13, 2013
Stem Cells Discovered in Deadly Parasitic Flatworms
The study was described in Nature on February 28, 2013.
Friday, March 15, 2013
Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!