Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers See Stem Cells Take Initial Step Toward Development

Published: Tuesday, June 03, 2014
Last Updated: Tuesday, June 03, 2014
Bookmark and Share
Study represents the first time this critical step has been demonstrated in a laboratory.

The gap between stem cell research and regenerative medicine just became a lot narrower, thanks to a new technique that coaxes stem cells, with potential to become any tissue type, to take the first step to specialization. 

University of Illinois researchers, in collaboration with scientists at Notre Dame University and the Huazhong University of Science and Technology in China, published their results in the journal Nature Communications.

“Everybody knows that for an embryo to form, somehow a single cell has a way to self-organize into multiple cells, but the in vivo microenvironment is not well understood,” said study leader Ning Wang, a professor of mechanical science and engineering at the U. of I. “We want to know how they develop into organized structures and organs. It doesn’t happen by random chance. There are biological rules that we don’t yet understand.”

During fetal development, all the specialized tissues and organs of the body form out of a small ball of stem cells. First, the ball of generalized cells separates into three different cell lines, called germ layers, which will become different systems of the body. This crucial first step has eluded researchers in the lab. No one has yet been able to induce the cells to form the three distinct germ layers, in the correct order – endoderm on the inside, mesoderm in the middle and ectoderm on the outside. This represents a major hurdle in the application of stem cells to regenerative medicine, since researchers need to understand how tissues develop before they can reliably recreate the process.

“It’s very hard to generate tissues or organs, and the reason is that we don’t know how they form in vivo,” Wang said. “The problem, fundamentally, is that the biological process is not clear. What is the biological environment that controls this, so they can become more organized and specialized?”

Wang’s team demonstrated that not only is it possible for mouse embryonic stem cells to form three distinct germ layers in the lab, but also that achieving the separation requires a careful combination of correct timing, chemical factors and mechanical environment. The team uses cell lines that fluoresce in different colors when they become part of a germ layer, which allows the researchers to monitor the process dynamically.

The researchers deposited the stem cells in a very soft gel matrix, attempting to recreate the properties of the womb. They found that several mechanical forces played a role in how the cells organized and differentiated – the stiffness of the gel, the forces each cell exerts on its neighbors, and the matrix of proteins that the cells themselves deposit as a scaffolding to give the developing embryo structure.

By adjusting the mechanical environment, the researchers were able to observe how the forces affected the developing cells, and found the particular combination that yielded the three germ layers. They also found that they could direct layer development by changing the mechanics, even creating an environment that caused the layers to form in reverse order.

Now, Wang’s group is working to improve their technique for greater efficiency. He hopes that other researchers will be able to use the technique to bridge the gap between stem cells and tissue engineering.

“It’s the first time we’ve had the correct three-germ-layer organization in mammalian cells,” Wang said. “The potential is huge. Now we can push it even further and generate specific organs and tissues. It opens the door for regenerative medicine.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Friday, June 24, 2016
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Friday, April 29, 2016
Epigenetic Switches that turn Stem Cells into Blood Vessel Cells Uncovered
Researchers at the University of Illinois have identified a molecular mechanism that directs embryonic stem cells to mature into endothelial cells.
Monday, June 29, 2015
Microtubes Create Cozy Space For Neurons To Grow
Illinois researchers developed a platform to grow and study neuron cells using tiny rolled microtubes.
Friday, November 14, 2014
Banked Blood Grows Stiffer With Age
It may look like fresh blood and flow like fresh blood, but the longer blood is stored, the less it can carry oxygen into the tiny microcapillaries of the body.
Monday, September 08, 2014
Researchers Study Link Between Exercise and Recovery Time in Stem Cell Transplantation
Researchers at the University of Illinois have received a grant to determine whether exercise can shorten recovery time for patients who undergo high-dose chemotherapy and stem cell transplantation.
Friday, February 01, 2013
Scientists Identify Gene Involved in Stem Cell Self-Renewal in Planaria
The work could lead to a better understanding of the fundamental mechanisms by which stem cells are regulated.
Friday, August 11, 2006
Scientific News
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Biobank Storage Time Affects Blood Test Results
Study finds storage time of blood samples at a biobank may affect test results as much as patient age.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!