Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Unlocking the Potential of Stem Cells to Repair Brain Damage

Published: Friday, June 06, 2014
Last Updated: Friday, June 06, 2014
Bookmark and Share
Ms Rachel Okolicsanyi research published in Developmental Biology journal.

A QUT scientist is hoping to unlock the potential of stem cells as a way of repairing neural damage to the brain.

Rachel Okolicsanyi, from the Genomics Research Centre at QUT's Institute of Health and Biomedical Innovation, said unlike other cells in the body which were able to divide and replicate, once most types of brain cells died, the damage was deemed irreversible.

Ms Okolicsanyi is manipulating adult stem cells from bone marrow to produce a population of cells that can be used to treat brain damage.

"My research is a step in proving that stem cells taken from the bone marrow can be manipulated into neural cells, or precursor cells that have the potential to replace, repair or treat brain damage," she said.

Ms Okolicsanyi's research has been published in Developmental Biology journal, and outlines the potential stem cells have for brain damage repair.

"What I am looking at is whether or not stem cells from the bone marrow have the potential to differentiate or mature into neural cells," she said.

"Neural cells are those cells from the brain that make everything from the structure of the brain itself, to all the connections that make movement, voice, hearing and sight possible."

Ms Okolicsanyi's research is looking at heparin sulfate proteoglycans - a family of proteins found on the surface of all cells.

"What we are hoping is that by manipulating this particular family of proteins we can encourage the stem cells to show a higher percentage of neural markers indicating that they could mature into neural cells rather than what they would normally do, which is form into bone, cartilage and fat," she said.

"We will manipulate these cells by modifying the surrounding environment. For example we will add chemicals such as complex salts and other commonly found biological chemicals to feed these cells and this will either inhibit or encourage cellular processes."

Ms Okolicsanyi said by doing this, it would be possible to see the different reactions stem cells had to particular chemicals and find out whether these chemicals could increase or decrease the neural markers in the cells.

"The proteins that we are interested in are almost like a tree," she said.

"They have a core protein that is attached to the cell surface and they have these heparin sulfate chains that branch off.

"So when the chemicals we add influence the stem cell in different ways, it will help us understand the interactions between proteins and the resulting changes in the cell.

"In the short-term it is proof that simple manipulations can influence the stem cell and in the long-term it is about the possibility of increasing the neural potential of these stem cells."

Ms Okolicsanyi said the big picture plan was to be able to introduce stem cells into the brain that would be able to be manipulated to repair damaged brain cells.

"The idea, for example, is that in stroke patients where the patient loses movement, speech or control of one side of their face because the brain's electrical current is impaired, that these stem cells will be able to be introduced and help the electrical current reconnect by bypassing the damaged cells."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!