Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ImStem Makes Progress on MS Treatment with Embryonic Stem Cells

Published: Saturday, June 07, 2014
Last Updated: Saturday, June 07, 2014
Bookmark and Share
Company has successfully treated an animal model using hES-MSCs.

ImStem Biotechnology, Inc. (ImStem) has announced that it has successfully treated an animal model of multiple sclerosis (MS) using human embryonic stem cells (hESC) derived mesenchymal stem cells (MSCs), called hES-MSCs.

MS is a chronic neuroinflammatory disease with no cure. Most current MS therapies offer only palliative relief without repairing damaged nerve cells. MSCs may reduce neuroinflammation and promote nerve cell regeneration in MS.

Now researchers from ImStem, in collaboration with University of Connecticut Health Center (UCHC) and Advanced Cell Technology, Inc.(OTCBB:ACTC), have developed a novel therapy to treat MS with hES-MSCs. They found that hES-MSCs are more effective in treating animal model of MS than MSCs from bone marrow of adult human donors (BM-MSC). This work is published in the June 5th 2014 online edition of Stem Cell Reports, the official journal of International Society for Stem Cell Research.

“The beauty of the new hES-MSCs is their consistently high efficacy in MS model. This is a big surprise when we found that most BM-MSC lines show poor or no efficacy. Additionally, BM-MSCs but not hES-MSCs express high level of IL-6, a proinflammatory cytokine can worsen the disease. This definitely adds more advantages to hES-MSCs, which are younger, purer and only express the right factors" says the lead author Dr. Xiaofang Wang, CTO of ImStem.

"These great advantages perfectly match the requirements for safety and quality control of clinical-grade MSCs as a potential therapy for autoimmune diseases such as multiple sclerosis, inflammatory bowel disease and rheumatoid arthritis.” says Dr. Ren-He Xu, the corresponding author, CSO of ImStem and professor of the University of Macau.

Dr. Joel Pachter, a UCHC collaborator, observed fluorescently labeled hES-MSCs but not BM-MSCs effectively penetrated the blood brain barrier and migrated into inflamed spinal cord. He remarks, "This difference is extraordinary as it could hold a key to the therapeutic action(s) of hES-MSCs. MSCs might require access to specific sites within the central nervous system in order to remediate disease."

"This was unexpected as bone marrow MSCs are widely believed to be effective in this EAE animal model. Our data indicate that the use of BM-MSCs is highly variable and there may be a previously unrecognized risk of poor outcome associated with IL-6 produced by these cells," says Dr. Stephen Crocker, another UCHC collaborator.

Imstem was founded by Dr. Xiaofang Wang and Dr. Ren-He Xu, former director of UConn Stem Cell Core in 2012. In 2013, ImStem was awarded a $1.13M grant from the State of Connecticut Stem Cell Research Program and a $150,000 pre-seed fund from Connecticut Innovations. With these supports, ImStem has improved the hES-MSC technology with better efficiency and safety and has developed clinical grade hES-MSCs in its cGMP facility. ImStem is now seeking approval for Phase I clinical trials using its hES-MSCs and is looking for investors to fasten the progress.

"ImStem, our first spinoff company from the UConn Stem Cell Core, is uncovering the translational potential of hES-MSCs. ImStem’s cutting-edge work demonstrates the success of Connecticut’s Stem Cell and Regenerative Medicine funding program in moving stem cells from bench to bedside." says Dr. Marc Lalande, director of the University of Connecticut Stem Cell Institute.

“Connecticut’s investment in stem cells, especially human embryonic stem cells, continues to position our state as a leader in biomedical research,” said Governor Dannel P. Malloy. “This new study move us one step closer to a stem cell based clinical product which could improve people’s lives.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Edited Stem Cells Offer Hope of Precision Therapy for Blindness
Findings raise the possibility of treating blinding eye diseases using a patient's own corrected cells as replacement tissue.
Hacking the Programs of Cancer Stem Cells
All tumor cells are the offspring of a single, aberrant cell, but they are not all alike.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!