Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Wisconsin Scientists Find Genetic Recipe to Turn Stem Cells to Blood

Published: Monday, July 14, 2014
Last Updated: Tuesday, July 15, 2014
Bookmark and Share
The ability to reliably and safely make in the laboratory all of the different types of cells in human blood is one key step closer to reality.

Writing today in the journal Nature Communications, a group led by University of Wisconsin-Madison stem cell researcher Igor Slukvin reports the discovery of two genetic programs responsible for taking blank-slate stem cells and turning them into both red and the array of white cells that make up human blood.

The research is important because it identifies how nature itself makes blood products at the earliest stages of development. The discovery gives scientists the tools to make the cells themselves, investigate how blood cells develop and produce clinically relevant blood products.

“This is the first demonstration of the production of different kinds of cells from human pluripotent stem cells using transcription factors,” explains Slukvin, referencing the proteins that bind to DNA and control the flow of genetic information, which ultimately determines the developmental fate of undifferentiated stem cells.

During development, blood cells emerge in the aorta, a major blood vessel in the embryo. There, blood cells, including hematopoietic stem cells, are generated by budding from a unique population of what scientists call hemogenic endothelial cells. The new report identifies two distinct groups of transcription factors that can directly convert human stem cells into the hemogenic endothelial cells, which subsequently develop into various types of blood cells.

The factors identified by Slukvin’s group were capable of making the range of human blood cells, including white blood cells, red blood cells and megakaryocytes, commonly used blood products.

 “By overexpressing just two transcription factors, we can, in the laboratory dish, reproduce the sequence of events we see in the embryo” where blood is made, says Slukvin of the Department of Pathology and Laboratory Medicine in the UW School of Medicine and Public Health and the Wisconsin National Primate Research Center.

The method developed by Slukvin’s group was shown to produce blood cells in abundance. For every million stem cells, the researchers were able to produce 30 million blood cells.

A critical aspect of the work is the use of modified messenger RNA to direct stem cells toward particular developmental fates. The new approach makes it possible to induce cells without introducing any genetic artifacts. By co-opting nature’s method of making cells and avoiding all potential genetic artifacts, cells for therapy can be made safer.

“You can do it without a virus, and genome integrity is not affected,” Slukvin notes.

Moreover, while the new work shows that blood can be made by manipulating genetic mechanisms, the approach is likely to be true as well for making other types of cells with therapeutic potential, including cells of the pancreas and heart.

An unfulfilled aspiration, says Slukvin, is to make hematopoietic stem cells, multipotent stem cells found in bone marrow. Hematopoietic stem cells are used to treat some cancers, including leukemia and multiple myeloma. Devising a method for producing them in the lab remains a significant challenge.

“We still don’t know how to do that,” Slukvin notes, “but our new approach to making blood cells will give us an opportunity to model their development in a dish and identify novel hematopoietic stem cell factors.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Directing Stem Cells, Context Matters
The surface cells are grown on has a profound effect on differentiation.
Tuesday, September 09, 2014
New Gene Repair Technique Promises Advances in Regenerative Medicine
Using human iPSC’s and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Thursday, August 15, 2013
Adult Cells Transformed into Early-Stage Nerve Cells, Bypassing the Pluripotent Stem Cell Stage
A UW-Madison research group has converted skin cells from people and monkeys into a cell that can form a wide variety of nervous-system cells.
Tuesday, May 07, 2013
Cells from Skin Create Model of Blinding Eye Disease
For the first time, Wisconsin researchers have taken skin from patients and, using induced pluripotent stem cell (iPSC) technology, turned them into a laboratory model for an inherited type of macular degeneration.
Monday, November 12, 2012
Stem Cell Symposium to Address Brain, Nervous System
Seventh Symposium will focus on the mechanisms of neural development, modeling neural disorders, and harnessing the potential of neural regeneration.
Thursday, April 12, 2012
Study Reveals Critical Similarity Between Two Types of Do-it-All Stem Cells
Researchers at the University of Wisconsin-Madison report the first full measurement of the proteins made by both types of stem cells.
Monday, September 12, 2011
Study Shows Patient's Own Cells May Hold Therapeutic Promise After Reprogramming, Gene Correction
Scientists from the Morgridge Institute for Research, the University of Wisconsin-Madison, the University of California and the WiCell Research Institute moved gene therapy one step closer to reality.
Tuesday, April 26, 2011
Study Shows Patient’s Own Cells may Hold Therapeutic Promise After Reprogramming, Gene Correction
Scientists determine that the process of correcting a genetic defect does not substantially increase the number of potentially cancer-causing mutations in induced pluripotent stem cells.
Wednesday, April 13, 2011
Scientific News
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos