Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells from Nerves Forming Teeth

Published: Wednesday, July 30, 2014
Last Updated: Wednesday, July 30, 2014
Bookmark and Share
Findings published in the scientific journal Nature.

Researchers at Karolinska Institutet have discovered that stem cells inside the tooth's soft parts have an unexpected origin, namely nerves. The findings published in the scientific journal Nature and contribute to new knowledge about how the teeth are formed, how they grow and how they can repair themselves.

Our health and quality of life is closely linked to how our teeth feel. With age, the teeth more susceptible to infections, wear and damage, and it is an important duty of care to help people maintain good dental health. It is known that the tooth alive soft parts, the pulp, in addition to connective tissue, blood vessels and nerves also contains a small reservoir of stem cells. These stem cells can repair the tooth after injury by contributing to the formation of both hard and soft dental tissue. Researchers have long discussed the stem cell origin. By studying teeth in mice, the researchers behind the new study have been able to follow individual cells' fate.

We have identified a previously unknown type of stem cells, which unexpectedly belong to the nerves in the tooth - the nerves that normally associated with the most extreme tooth pain sensitivity, says Kaj Fried at the Department of Neuroscience , one of the leaders of the study.

The researchers discovered that young cells which are initially part of the nerve support cells, called glial cells, leaving the nerves early in fetal development. The cells replace the identity and becomes both connective tissue cells in the dental pulp, and to odontoblasts, the cells that produce the hard dentine during enamel. Today it is not possible to develop new teeth in adults, but the discovery of a new type of stem cells contributes in important ways to the knowledge and technology required for it will eventually be possible.

The fact that stem cells are available in the nerves are fundamentally very important and not unique to the tooth. Our results suggest that the peripheral nerves, which of course are virtually everywhere, can serve as important stem cell reservoirs. From here, multipotent stem cells leave the nerves and help to heal and regenerate tissue in various parts of the body, says Igor Adameyko at the Department of Physiology and Pharmacology , who along with Kaj Fried responsible for the study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Insights into Early Human Embryo Development
Researchers at Karolinska Institutet and the Ludwig Cancer Research in Stockholm have conducted a detailed molecular analysis of the embryo’s first week of development.
Monday, April 11, 2016
Different Cell Mechanisms Behind Regenerated Limbs
Scientists at Karolinska Institutet have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts.
Tuesday, November 26, 2013
Synthetic mRNA can Induce Self-Repair and Regeneration of the Infarcted Heart
A team of scientists has instructing injured hearts in mice to heal by expressing a factor that triggers cardiovascular regeneration driven by native heart stem cells.
Monday, September 16, 2013
The 2012 Nobel Prize in Physiology or Medicine
The Nobel Assembly at Karolinska Institutet has decided to award the Nobel Prize jointly to John B. Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent.
Tuesday, October 09, 2012
New Findings on the Formation of Body Pigment
The skin's pigment cells can be formed from completely different cells than has hitherto been thought, a new study from the Swedish medical university Karolinska Institutet shows. The results, which are published in the journal Cell, also mean the discovery of a new kind of stem cell.
Thursday, October 22, 2009
Cell-IQ® Cell Imaging System Aids Fertility Research at Karolinska
Cell-IQ® platform helps investigate mechanisms of infertility and oocyte maturation, and for characterization of human embryonic stem cell lines.
Thursday, July 09, 2009
Stem Cell Research Aims to Tackle Parkinson's Disease
New ways to grow brain cells in the laboratory could eventually provide a way to treat Parkinson's disease, scientists say.
Wednesday, January 23, 2008
Stem Cell Team Wins 2007 Nobel for Medicine
Stem cell researchers Mario Capecchi, Martin Evans and Oliver Smithies won the 2007 Nobel prize for medicine or physiology for their work on gene changes in mice using embryonic cells.
Tuesday, October 09, 2007
Scientific News
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
Stem Cell Gene Therapy For Fatal Childhood Disease Ready For Human Trial
A pioneering approach for Sanfilippo disease, a genetic condition for which there is no effective treatment, will now be trialled in humans.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!