Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Dramatic Growth of Grafted Stem Cells in Rat Spinal Cord Injuries

Published: Tuesday, August 12, 2014
Last Updated: Tuesday, August 12, 2014
Bookmark and Share
Reprogrammed human neurons extend axons almost entire length of central nervous system.

Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran’s Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals’ central nervous system.

Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived axons extended through the white matter of the injury sites, frequently penetrating adjacent gray matter to form synapses with rat neurons. Similarly, rat motor axons pierced the human iPSC grafts to form their own synapses.

The iPSCs used were developed from a healthy 86-year-old human male.

“These findings indicate that intrinsic neuronal mechanisms readily overcome the barriers created by a spinal cord injury to extend many axons over very long distances, and that these capabilities persist even in neurons reprogrammed from very aged human cells,” said senior author Mark Tuszynski, MD, PhD, professor of Neurosciences and director of the UC San Diego Center for Neural Repair.

For several years, Tuszynski and colleagues have been steadily chipping away at the notion that a spinal cord injury necessarily results in permanent dysfunction and paralysis. Earlier work has shown that grafted stem cells reprogrammed to become neurons can, in fact, form new, functional circuits across an injury site, with the treated animals experiencing some restored ability to move affected limbs. The new findings underscore the potential of iPSC-based therapy and suggest a host of new studies and questions to be asked, such as whether axons can be guided and how will they develop, function and mature over longer periods of time.

While neural stem cell therapies are already advancing to clinical trials, this research raises cautionary notes about moving to human therapy too quickly, said Tuszynski.

“The enormous outgrowth of axons to many regions of the spinal cord and even deeply into the brain raises questions of possible harmful side effects if axons are mistargeted. We also need to learn if the new connections formed by axons are stable over time, and if implanted human neural stem cells are maturing on a human time frame - months to years - or more rapidly. If maturity is reached on a human time frame, it could take months to years to observe functional benefits or problems in human clinical trials.”

In the latest work, Lu, Tuszynski and colleagues converted skin cells from a healthy 86-year-old man into iPSCs, which possess the ability to become almost any kind of cell. The iPSCs were then reprogrammed to become neurons in collaboration with the laboratory of Larry Goldstein, PhD, director of the UC San Diego Sanford Stem Cell Clinical Center. The new human neurons were subsequently embedded in a matrix containing growth factors and grafted into two-week-old spinal cord injuries in rats.

Three months later, researchers examined the post-transplantation injury sites. They found biomarkers indicating the presence of mature neurons and extensive axonal growth across long distances in the rats’ spinal cords, even extending into the brain. The axons traversed wound tissues to penetrate and connect with existing rat neurons. Similarly, rat neurons extended axons into the grafted material and cells. The transplants produced no detectable tumors.

While numerous connections were formed between the implanted human cells and rat cells, functional recovery was not found. However, Lu noted that tests assessed the rats’ skilled use of the hand. Simpler assays of leg movement could still show benefit. Also, several iPSC grafts contained scars that may have blocked beneficial effects of new connections. Continuing research seeks to optimize transplantation methods to eliminate scar formation.

Tuszynski said he and his team are attempting to identify the most promising neural stem cell type for repairing spinal cord injuries. They are testing iPSCs, embryonic stem cell-derived cells and other stem cell types.

“Ninety-five percent of human clinical trials fail. We are trying to do as much as we possibly can to identify the best way of translating neural stem cell therapies for spinal cord injury to patients. It’s easy to forge ahead with incomplete information, but the risk of doing so is greater likelihood of another failed clinical trial. We want to determine as best we can the optimal cell type and best method for human translation so that we can move ahead rationally and, with some luck, successfully.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Thursday, November 12, 2015
Multiple Models Reveal New Genetic Links in Autism
For answers, researchers turned to mice, stem cells and the “tooth fairy”.
Tuesday, November 11, 2014
Novel Drug Targeting Leukemia Cells Enters Clinical Trial
Phase 1 human clinical trial to assess the safety and efficacy of a new monoclonal antibody for CLL patients.
Friday, September 19, 2014
Scientists Discover Neurochemical Imbalance in Schizophrenia
Researchers discovers that neurons from schizophrenia patients secrete higher amounts of three neurotransmitters.
Tuesday, September 16, 2014
Clinical Trial to Test Safety of Stem Cell-Derived Therapy for Type 1 Diabetes
UC San Diego is initial site for first-in-human testing of implanted cell therapy.
Wednesday, September 10, 2014
Clinical Trial Evaluates Safety of Stem Cell Transplantation in Spine
Phase I clinical trial is recruiting eight patients for the 5-year study.
Wednesday, August 13, 2014
Scientific News
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Studies Explore Science of Cardiovascular Diseases
Two studies highlight how basic science research insights are key to future treatment breakthroughs.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Stem Cell Transplant Without Radiation or Chemotherapy
Researchers have successfully performed stem cell transplants without using radiation or chemotherapy.
Advanced Lymphoma in Remission After T-Cell Therapy
63% of trial participants who recieved two-drug combination chemo plus intermediate dose of engineered T cells went into complete remission.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Biobank Storage Time Affects Blood Test Results
Study finds storage time of blood samples at a biobank may affect test results as much as patient age.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!