Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Research Could aid Male Infertility

Published: Wednesday, July 12, 2006
Last Updated: Wednesday, August 09, 2006
Bookmark and Share
Study helps scientists to understand more about how animals produce sperm.

Scientists have shown that sperm grown from embryonic stem cells can be used to produce offspring.

The experiment was carried out using mice and produced seven babies, six of which lived to adulthood.

The study, reported Monday July 10, in the academic journal Developmental Cell, helps scientists to understand more about how animals produce sperm. This knowledge has potential applications in the treatment of male infertility.

Karim Nayernia, who has just taken up a post as Professor of Stem Cell Biology at Newcastle University, led the research while in his previous position at Georg-August University in Gotingen, Germany, with Prof. Dr Wolfgang Engel and colleagues from Germany and the UK, including Dr. David Elliott from Newcastle University's Institute of Human Genetics.

Prof Nayernia, of the Newcastle-Durham-NHS Institute for Stem Cell Biology and Regenerative Medicine, and his team describe in their paper how they developed a strategy for generating mature sperm cells in the laboratory using embryonic stem cells from mice. They then went on to test whether this sperm would function in real life.

The team isolated stem cells from a blastocyst, an early-stage embryo that is a cluster of cells only a few days old.

These cells were grown in the laboratory and screened using a special sorting machine. Some had grown into a type of stem cell known as ‘spermatogonial stem cells’, or early-stage sperm cells.

The spermatogonial cells were singled out, then genetically marked and grown in the laboratory.

Some of them grew into cells resembling sperm, known as gametes, which were themselves singled out and highlighted using a genetic marker.

The sperm that had been derived from the embryonic stem cells was then injectd into the female mouse eggs and grown into early-stage embryos.

The early-stage embryos were transplanted into the female mice which produced seven babies. Six developed into adult mice.

Prof Nayernia, who originally hails from Shiraz in Southern Iran, said, "This research is particularly important in helping us to understand more about spermatogenesis, the biological process in which sperm is produced. We must know this if we are to get to the root of infertility."

"If we know more about how spermatogonial stem cells turn into sperm cells, this knowledge could be translated into treatments for men who are unable to produce mature sperm, although this is several years down the line."

"For example, we could isolate a patient’s spermatagonial cells using a simple testicular biopsy, encourage them in the laboratory into becoming functional sperm and transplant them back into the patient."

The findings could also inform a field of stem cell research known as nuclear transfer, or therapeutic cloning, which aims to provide tailor-made stem cells to aid disease therapy and infertility. Sperm cells could potentially be created using this method.

Although previous studies have shown that embryonic stem cells grown in the laboratory can become germ cells that give rise to cells resembling sperm cells or gametes.

Prof Nayernia added, "Spermatogonial stem cells are extremely promising and more research is needed to establish their full potential."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cell Firm Selects Newcastle for European Base
RNL Bio has signed an initial 12 month tenancy agreement for a unit at the ‘Cels at Newcastle’ bio-incubator at Newcastle University's Medical School.
Friday, February 08, 2008
Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Modelling ALS Requires ‘Aged’ Stem Cells
Research suggests engineered cells are too ‘young’ to accurately model ALS and should be 'aged' to speed progress toward finding potential treatments.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Rapid Generation from Stem Cells
Researchers coax human stem cells to rapidly generate bone and heart muscle by directing stem cells down complex developmental pathways.
HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!