Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Report Gene Network in Early Tooth Development

Published: Wednesday, February 11, 2009
Last Updated: Wednesday, February 11, 2009
Bookmark and Share
Researchers have deduced a network of dental genes in cichlids that likely was present to build the first tooth some half a billion years ago.

Darwin had his finches, Morgan had his fruit flies, and scientists today have cichlid fishes to trace the biological origins of jaws and teeth.

In this week's issue of the journal PLoS Biology, researchers supported by the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health, report they have deduced a network of dental genes in cichlids that likely was present to build the first tooth some half a billion years ago.

The researchers say their finding lays out a core evolutionary list of molecules needed to make a tooth. These original dental genes, like a four-cylinder Model T engine to the marvels of modern automotive engineering, were then gradually replaced, rewired, or left in place to produce the various shapes and sizes of teeth now found in nature, from shark to mouse to monkey to human.

Todd Streelman, Ph.D., a scientist at Georgia Institute of Technology in Atlanta and senior author on the study, said the discovery should provide useful information for researchers attempting to coax diseased teeth back to health with biology rather than the traditional hand-held drill.

"To truly understand any part of the body, you must know how it was originally designed," said Streelman. "This is especially important when it comes to teeth. The teeth of fishes not only develop distinct sizes and shapes, they are also repaired, shed, and replaced throughout life."

"But these characteristics, once intertwined, have been decoupled through the ages in higher organisms, and the ability to repair and regrow teeth has been largely lost," he added. "If we could learn to selectively restore these traits in the dentist's office, it would mark a major step forward in helping people protect and repair their teeth. I think this gene network provides a nice evolutionary clue on how best to proceed."

Teeth are extremely ancient structures that arose in early vertebrates -- animals with a backbone -- but interestingly predate jaws. The fossil record indicates the first patterned set of teeth, or dentition, arose in the back of the pharynx of jawless fish. The pharynx is a tube-like part of the throat that functioned in early fish as a rudimentary jaw in which pharyngeal teeth filtered and processed food.

Over the millennia, as vertebrates developed more powerful opposing jaws for feeding in water and on land, most species adapted their dentitions there. Today, scientists can offer a real-life glimpse of this developmental bifurcation by pointing to vertebrates, such as zebrafish, that retain pharyngeal teeth only; others, such as mouse and human, that have oral teeth only; and a subset, including cichlids, that thrives with both.

That's where the cichlids enter the research picture. In Lake Malawi, one of East Africa's Great Lakes, scientists can find a great diversity of dentitions among more than 1,000 cichlid species. Most species are endemic to East Africa and closely related, but they have evolved into a rainbow of colors, shapes, and sizes over the last one to two million years to enable them to inhabit the lake's diverse terrain.

"They really are quite unique," said Gareth Fraser, a postdoctoral fellow in the Streelman laboratory and lead author on the paper. "Some cichlids have in total more than 3,000 teeth lining their pharynx and mouth. Each tooth gets replaced every 50 to 100 days with each tooth position maintaining its own stem cell niche, or environment, that initiates development of the next generation of teeth."

Last year, Fraser and colleagues described a gene network that seemed to control the patterning of tooth size, number, and spacing in Lake Malawi cichlids. Interestingly, the genes began this patterning very early in embryonic development. This indicated to the scientists that teeth are patterned similarly to other ectodermally-derived organs, such as feathers and hairs. The ectoderm is one of three germ layers, or groups of cells, that form the external covering of a developing embryo.

They then asked a follow-up question: Is tooth number controlled similarly in the pharyngeal and oral jaw? As straightforward as the question seemed, it made no obvious biological sense. The two jaws are developmentally decoupled, as separate and distinct spatially in the embryo as Africa and North America. What's more, the oral jaw is a relative evolutionary newcomer that is thought to have originated from the loss of a particular set of genes during the transition from jawless to jawed vertebrates.

As described in their current PLoS Biology paper, co-author Darrin Hulsey, Ph.D., now at the University of Tennessee, found tooth number was indeed correlated in the two jaws. This surprising finding then raised the all-important question of how this was developmentally possible.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Scan Finds Link Across Array of Childhood Brain Disorders
Researchers found gene mutations through whole exome sequencing - a new gene scanning technology that cuts the cost and time of searching for rare mutations.
Friday, August 27, 2010
NIH-Funded Researchers Generate Mature Egg Cells From Early Ovarian Follicles
Technique successful in mice, may offer women new options for fertility treatment.
Monday, August 09, 2010
NIH-Funded Researchers Make Progress Toward Regenerating Tissue to Replace Joints
A team of NIH-funded researchers has successfully regenerated rabbit joints using a cutting edge process to form the joint inside the body, or in vivo.
Monday, August 02, 2010
Gene Associated with Rare Adrenal Disorder Appears to Trigger Cell Death, According to NIH Study
Mice lacking Prkar1a gene in the adrenal glands developed an overgrowth of adrenal tissue and tumors in the gland.
Thursday, July 15, 2010
NIH Opens Website for Human Embryonic Stem Cell Lines for Approval and Announces Members of Working Group
NIH is now accepting requests for human embryonic stem cell lines to be approved for use in NIH-funded research.
Thursday, October 08, 2009
NIH Announces Plan to Implement President's Stem Cell Executive Order
The plan calls for aggressively pursuing an assessment of the potential of alternative sources of pluripotent stem cell lines.
Thursday, September 20, 2007
Researchers Isolate Adult Stem Cells for First Time in Tendon
The finding points to a natural source of tendon-producing cells in adults and raises the possibility that these cells one day could help to mend torn or degenerating tendons.
Tuesday, September 11, 2007
Unstable Leukemia Stem Cells may Predispose Patients to Drug Resistance
A NIH study shows that BCR-ABL gene in chronic myeloid leukemia stem cells can help explain the reason for resistance of patients to the drug imatinib that target that gene.
Wednesday, May 02, 2007
Scientific News
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
CRI Identifies Emergency Blood-formation Response
Researchers report that when tissue damage occurs, an emergency blood-formation system activates.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos