Corporate Banner
Satellite Banner
Technology Networks Header
Tuesday, January 27, 2015
Technology Networks
 
Register | Sign in
Home Page>Posters

  Posters

Analyzing Molecular Polar Surface Descriptors to Predict Blood-Brain Barrier Permeation
Sergey Shityakova, Winfried Neuhausa, Thomas Dandekarc and Carola Förstera

Permeation of active drugs across the vascular brain endothelium into the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Some molecular quantities like polar surface (PS) descriptors are of key interest to medicinal chemists to predict the BBB permeation fate for different drug-like chemical compounds.

The Mesenchymal Stem Cells Bioengineered Tissue Using Cobalt-60 Radiation
Mosca, RC., Isaac, C., Mathor, MB

The biological effects of gamma radiation by cobalt-60 sources on epidermal-dermal matrix have not been fully elucidated when mesenchymal stem cells cultured add in. This poster shows how scientists standardized the keratinocytes and adipose-derived stem cell (ADSC) culture procedure before constructing a bioengineered dermal-epidermal equivalent populated by keratinocytes and ADSC cultured cells.

Expression of Pluripotency-determining Factors in in vitro Fertilized Buffalo Embryos and Embryonic Stem Cells
T Anand, D Kumar, M S Chauhan, and P Palta

The POU octamer-binding domain transcription factor Oct-4, Stage-specific embryonic antigens (SSEAs), and Tumor rejection antigens (TRAs), are developmentally regulated during early embryogenesis.

Effect of Culture Media and Serum Supplementation on the Development of in vitro Fertilized Buffalo Embryos
D Kumar, T Anand, P Palta and M.S. Chauhan

This poster compares the development of buffalo embryos in simple and complex culture media and aims to determine the effects of serum supplementation on the development of buffalo embryos.

High Content Analysis of Neural Stem Cell Expansion and Differentiation
Oksana Sirenko, Allan C. Powe, Steven L. Stice, Karen Cook, Nick Callamaras, Jayne Hesley, Xin Jiang and Evan F. Cromwell

Automated assay methods for monitoring neural stem cell expansion and differentiation using stem cell derived neural cell lines and high content imaging systems have been described.

Neurotoxicity Assays Using iPSC-Derived Neurons and High Content Imaging
Oksana Sirenko, Susan DeLaura, Lucas Chase, Jayne Hesley and Evan F. Cromwell

Neurotoxicity can cause temporary or permanent damage of brain or peripheral nervous system and has been found to be a major cause of neurodegenerative diseases such as Alzheimer’s or Parkinson’s. Accordingly, there is a great interest in developing more predictive, disease relevant cell-based models and efficient screening tools for assessing the neurotoxicity of chemical compounds, drug candidates and environmental agents.

Live Cell Beating Assay Using Human iPSC-derived Cardiomyocytes for Evaluation of Drug Efficacy and Toxicity
Oksana Sirenko, Carole Crittenden, Blake Anson, Jayne Hesley, Yen-Wen Chen, Nick Callamaras and Evan F. Cromwell

A large percentage of new drugs fail in clinical studies due to cardiac toxicity. Development of highly predictive in vitro assays suitable for screening, safety assessment or other environments is therefore extremely important for drug development. Human cardiomyocytes derived from stem cell sources can greatly accelerate the discovery of cardiac drugs and improve drug safety by offering more clinically relevant cell-based models than those presently available.

Regulation of shoot apical meristem development by SEUSS and SEUSS-LIKE 2 in Arabidopsis
Joanne E. Lee and John F. Golz

In Arabidopsis, SEU and SLK2 are redundant components of a regulatory complex that is proposed to promote shoot apical meristem (SAM) formation during embryogenesis. Expression analysis indicates that SEU and SLK2 act upstream of several known SAM regulators, and also regulate auxin accumulation, probably via interaction with auxin response factors.

Expansion of mesenchymal stem cells from frozen UCB
Christophe NP Madsen and Christian Clausen

Umbilical cord blood (UCB) has recently been the focus of clinical applications. UCB contains of hematopoietic stem cells and mesenchymal stem cells (MSC). Clinical studies shows that MSC can be used in regenerative medicine hereby treatment of cardiac diseases. The aim of this project is to establish a protocol for isolation of MSCs from frozen UCB. This study demonstrated that it’s possible to expand MSC.

<< 1 2 3 4 5 6 7 >>
Showing Results 11 - 20 of 71
Scientific News
Nanodiamonds Deliver Cancer Drug To Kill Chemoresistant Cancer Stem Cells More Effectively
Delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer.
New Revolutionary Culturing Technique for Liver and Pancreas
Culturing of mini-guts from single mouse intestine stem cells.
Bone Stem Cells Shown To Regenerate Bone And Cartilage In Adult Mice
Cells could be exploited to treat osteoarthritis and osteoporosis.
Novogen Announces Important Discovery in Regenerative Medicine Program
A key proof-of-concept step to develop drugs capable of stimulating the function of brain tissue stem cells.
Researchers Grow Functional Tissue-Engineered Intestine from Human Cells
Regenerative medicine technique brings surgeons one step closer to helping patients.
Defining Stages Of Stem Cell Reprogramming
Method developed by UCLA researchers to define the stages of stem cell reprogramming.
Discovery Links Shift In Metabolism To Stem Cell Renewal
Mouse cells exposed to the metabolite alpha-ketoglutarate became more likely to renew themselves.
Reprogramming Stem Cells May Prevent Cancer After Radiation
Study published in the journal Stem Cells.
Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Skyscraper Banner
SELECTBIO Market Reports
LabTube - Videos for the Scientific Community
eposters - The Online Journal of Scientific Posters
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn