Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


Mouse Oct4 Differentiation Reporter (pRedZeo, plasmid)

Product Description
Accurately monitor the pluripotent state Mammalian development requires the specification of over 200 unique cell types from a single totipotent cell. Embryonic stem (ES) cells are derived from the inner cell mass of the developing blastocyst and can be propagated in culture in an undifferentiated state while maintaining the capacity to generate any cell type in the body. The recent derivation of human ES cells provides a unique opportunity to study early development and an understanding of the transcriptional regulatory circuitry that is responsible for pluripotency and self-renewal in human ES cells is fundamental to understanding human development and realizing the therapeutic potential of these cells. Three transcription factors are known to be critical in the maintenance of ESC pluripotency: Oct4, Nanog, and Sox2. Oct4 (Pou5f1) has a highly conserved role in maintaining pluripotent cell populations (Nichols et al., 1998; Morrison and Brickman, 2006), and its expression level dictates ESC fate (Niwa et al., 2000). SOX2 forms a complex with OCT4 and is necessary to cooperatively activate target genes in ESCs (Yuan et al., 1995; Ambrosetti et al., 1997). These factors comprise one essential circuit regulating ESC pluripotency in which OCT4 regulates Sox2, and additionally, the OCT4-SOX2 complex activates Oct4 expression (Okumura-Nakanishi et al., 2005). The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. SBI has built lentivector-based transciptional Response Reporters that are responsive to Oct4 or Sox2 activity as response elements or Promoter Reporters for either Human or Mouse Oct4 and Nanog into the pGreenZeo, pRedZeo and pRedTK systems. Choice of fluorescent screening marker The lenti-reporter systems employ either a Green Fluorescent Protein (copGFP) or a Red Fluorescent Protein (RFP). Depending upon your screen, either Green or Red markers may be suitable and compatible with other fluorescent protein markers in your experimental scheme. The Response Reporters feature the dual reporting system with both GFP and Luciferase. Choice of antibiotic selection marker The Response Reporters have an optional constitutive EF1-Puro or -Neo selection cassette for establishing cells lines. The Promoter Reporters feature Zeomycin (Zeo) resistance marker confers resistance to the antibiotic Zeocin™. Zeocin™ causes cell death by intercalating into DNA and causes DNA strand breakage. This antibiotic is effective on most aerobic cells and is therefore useful for selection in bacteria, eukaryotic microorganisms, plant and animal cells. Thymidine kinase (TK) is a Herpes simplex virus-derived enzyme that acts on the guanosine nucleotide analog ganciclovir. TK phosphorylates ganciclovir, and TK+ cells produce highly-toxic triphosphates that lead to cell death (negative selection). All Stem Cell Pluipotency Monitors are available as lentivector plasmids or as pre-packaged lentiviral preparations (using the HIV lentiviral backbone and pseudotyped with VSV-G protein)—ready for transduction of target cells. The standard product size is 10 ug of plasmid or 1 x 10^6 IFUs per packaged lentiviral reporter. Positive and negative transduction control plasmids and pre-packaged viral particles are also available.
Product Mouse Oct4 Differentiation Reporter (pRedZeo, plasmid)
Company System Biosciences
Price Request a quote
More Information View company product page
Catalog Number SR10045PA-1
Quantity 10 ug
Company Logo

System Biosciences
265 North Whisman Rd. Mountain View, CA 94043, USA

Tel: 1.650-968-2200
Fax: 1.650.968.2277
Email: info@systembio.com



Scientific News
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
New Bio-Glass Could Make it Possible to Re-Grow or Replace Cartilage
Researchers at Imperial College London have developed a material that can mimic cartilage and potentially encourage it to re-grow.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.

SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!