Corporate Banner
Satellite Banner
Stem Cells, Cellular Therapy & Biobanking
>
Scientific Community
 
Become a Member | Sign in
Home>Resources>Latest Publications
  Latest Publications
Advanced Search

Keywords

Showing 100 Latest Publications
TitleDate Created
Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells.Monday, August 31, 2015
Fagoonee S, Famulari ES, Silengo L, Tolosano E, Altruda F,
PloS one.
One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine.
Efficacy of Mesenchymal Stem Cell Therapy for Steroid-Refractory Acute Graft-Versus-Host Disease following Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis.Monday, August 31, 2015
Chen X, Wang C, Yin J, Xu J, Wei J, Zhang Y,
PloS one. 31-8-2015
Age, skin involvement, lower aGVHD grade, and the number of infusions are the main prognostic factors affecting the efficacy of MSC therapy for steroid-refractory aGVHD.
Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes.Monday, August 31, 2015
Tarnawski L, Xian X, Monnerat G, Macaulay IC, Malan D, Borgman A, Wu SM, Fleischmann BK, Jovinge S,
PloS one. 31-8-2015
In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes.
CVD Growth of Graphene on NiTi Alloy for Enhanced Biological Activity.Monday, August 31, 2015
Li J, Wang G, Geng H, Zhu H, Zhang M, Di Z, Liu X, Chu PK, Wang X,
ACS applied materials & interfaces. 31-Aug-2015
From the perspective of surface modification of biomaterials, graphene is very promising due to its unique physical and chemical properties. Herein, we report direct in situ fabrication of graphene on nitinol (NiTi) shape memory alloy by chemical vapor deposition (CVD) and investigate both the growth mechanism as well as surface bioactivity of the modified alloy. Growth of the graphene layer is independent of Ni but is rather correlated with the formation of the TiC phase on the surface. Graphene nucleates and grows on this carbide layer during exposure to CH4. The graphene layer is observed to promote the osteogenesis differentiation of mesenchymal stem cells and surface bioactivity. The use of graphene as a bioactive layer is a viable approach to improve the surface properties of NiTi-based dental and orthopedic implants and components.
Human Tubal-Derived Mesenchymal Stromal Cells Associated with Low Level Laser Therapy Significantly Reduces Cigarette Smoke-Induced COPD in C57BL/6 mice.Monday, August 31, 2015
Peron JP, de Brito AA, Pelatti M, Brandão WN, Vitoretti LB, Greiffo FR, da Silveira EC, Oliveira-Junior MC, Maluf M, Evangelista L, Halpern S, Nisenbaum MG, Perin P, Czeresnia CE, Câmara NO, Aimbire F, Vieira RP, Zatz M, Ligeiro de Oliveira AP,
PloS one. 31-8-2015
Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs) is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL) therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs) cell therapy associated with a 30mW/3J-660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day) and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC), which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD.
The regulation of stem cell aging by Wnt signaling.Monday, August 31, 2015
Fujimaki S, Wakabayashi T, Takemasa T, Asashima M, Kuwabara T,
Histology and histopathology. 31-Aug-2015
Aging is an inevitable physiological process that leads to the dysfunction of various tissues, and these changes may contribute to certain diseases, and ultimately death. Recent research has discovered biological pathways that promote aging. This review focuses on Wnt signaling, Wnt is a highly conserved secreted signaling molecule that plays an essential role in the development and function of various tissues, and is a notable factor that regulates aging. Although Wnt signaling influences aging in various tissues, its effects are particularly prominent in neuronal tissue and skeletal muscle. In neuronal tissue, neurogenesis is attenuated by the downregulation of Wnt signaling with aging. Skeletal muscle can also become weaker with aging, in a process known as sarcopenia. A notable cause of sarcopenia is the myogenic-to-fibrogenic trans-differentiation of satellite cells by excessive upregulation of Wnt signaling with aging, resulting in the impaired regenerative capacity of aged skeletal muscle. However, exercise is very useful for preventing the age-related alterations in neuronal tissue and skeletal muscle. Upregulation of Wnt signaling is implicated in the positive effects of exercise, resulting in the activation of neurogenesis in adult neuronal tissue and myogenesis in mature skeletal muscle. Although more investigations are required to thoroughly understand age-related changes and their biological mechanisms in a variety of tissues, this review proposes exercise as a useful therapy for the elderly, to prevent the negative effects of aging and maintain their quality of life.
Transcriptional Analysis of Vitiligo Skinsreveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients.Monday, August 31, 2015
Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P, Mounier C, Rival Y, Piwnica D, Cavalié M, Chignon-Sicard B, Ballotti R, Voegel J, Passeron T,
The Journal of investigative dermatology. 31-Aug-2015
Vitiligo affects 1% of the worldwide population. Halting disease progression and repigmenting the lesional skin represent the two faces of therapeutic challenge in vitiligo. We performed transcriptome analysis on lesional, perilesional, and non-depigmented skin from vitiligo patients and on matched skin from healthy subjects. We found a significant increase in CXCL10 in non-depigmented and perilesional vitiligo skin compared to levels in healthy control skin; however, neither CXCL10 nor other immune factors were deregulated in depigmented vitiligo skin. Interestingly, the WNT pathway, which is involved in melanocyte differentiation, was altered specifically in vitiligo skin. We demonstrated that oxidative stress decreases WNT expression/activation in keratinocytes and melanocytes. We developed an ex vivo skin model and confirmed the decrease activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated ex vivo depigmented skin from vitiligo patients and successfully induced differentiation of resident stem cells into pre-melanocytes. Our results shed light on the previously unrecognized role of decreased WNT activation in the preventionof melanocyte differentiation in depigmented vitiligo skin. Furthermore, these results support further clinical exploration of WNT agonists to repigment vitiligo lesions.Journal of Investigative Dermatology accepted article preview online, 31 August 2015. doi:10.1038/jid.2015.335.
Tumorigenicity Analysis of Heterogeneous Dental Stem Cells and Its Self-Modification for Chromosome Instability.Monday, August 31, 2015
Meng Z, Chen G, Chen J, Yang B, Yu M, Feng L, Jiang Z, Guo W, Tian W,
Cell cycle (Georgetown, Tex.). 31-Aug-2015
Heterogeneity demonstrates that stem cells are constituted by several sub-clones in various differentiation states. The heterogeneous state is maintained by cross-talk among sub-clones, thereby ensuring stem cell adaption. In this study, we investigated the roles of heterogeneity on genetic stability. Three sub-clones (DF2, DF8 and DF18) were isolated from heterogeneous dental stem cells (DSCs), and were proved to be chromosome instability (CIN) after long term expansion. Cell apoptosis were not detected in sub-clones, which exhibited strong tumorigenesis tendency, coupled with weak expression of p53 and aberrant ultra-structure. However, three sub-clones did not overexpress tumor related markers or induce tumorigenesis in vivo. The mixed-culture study suggested that three-clone-mixed culturing cells (DF1) presented apparent decrease in the ratio of aneuploidy. The screening experiment further proved that three sub-clones functioned separately in this modification procedure but only mixed culturing all three sub-clones, simulated heterogeneous microenvironment, could achieve complete modification. Additionally, osteogenesis capability of three sub-clones was partially influenced by CIN while DSCs still kept stronger osteogenesis than sub-clones. These results suggested aberrant sub-clones isolated from heterogeneous DSCs were not tumorigenesis and could modify CIN by cross-talk among themselves, indicating that the heterogeneity played a key role in maintaining genetic stability and differentiation capability in dental stem cells.
A smart IR780 theranostic nanocarrier for tumor-specific therapy: hyperthermia-mediated bubble-generating and folate targeted liposomes.Monday, August 31, 2015
Guo F, Yu M, Wang J, Tan F, Li N,
ACS applied materials & interfaces. 31-Aug-2015
The therapeutic effectiveness of chemotherapy was hampered by dose limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by subjecting to near-infrared (NIR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature triggered release study indicated BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and anti-tumor study indicated IR780-BTSL-FA could specifically target to KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.
Patient-specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery.Monday, August 31, 2015
Tang S, Xie M, Cao N, Ding S,
Journal of medicinal chemistry. 31-Aug-2015
In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This perspective will review recent developments in modeling a variety of diseases-including their cellular phenotypes-with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.
Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.Monday, August 31, 2015
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Rotenstreich Y, Solomon AS,
Stem cell research. 20-Aug-2015
Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection.
A case report on management of synergistic gangrene following an incisional abdominal hernia repair in an immunocompromised obese patient.Monday, August 31, 2015
Merali N, Almeida RA, Hussain A,
International journal of surgery case reports. 1-Aug-2015
This case has demonstrated how a planned multidisciplinary action can produce prosperous results in a severely obese immunocompromised patient with an SSI, following an incisional hernia repair.
Reply: Studies in Fat Grafting: Part V. Cell-Assisted Lipotransfer to Enhance Fat Graft Retention is Dose Dependent.Monday, August 31, 2015
Zielins ER, Longaker MT, Wan DC,
Plastic and reconstructive surgery. 17-Aug-2015
Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.Monday, August 31, 2015
Piano V, Benjamin DI, Valente S, Nenci S, Marrocco B, Mai A, Aliverti A, Nomura DK, Mattevi A,
ACS chemical biology. 31-Aug-2015
Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.
Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium.Monday, August 31, 2015
Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, Sanchez JA, McFadden DW, Maulik N,
International journal of cardiology. 15-Aug-2015
Engineering MSCs to express Trx1 may prove to be a strategic therapeutic modality in the treatment of cardiac failure.
Responsibilities of Health Care Professionals in Counseling and Educating Patients With Incurable Neurological Diseases Regarding "Stem Cell Tourism": Caveat Emptor.Monday, August 31, 2015
Bowman M, Racke M, Kissel J, Imitola J,
JAMA neurology. 31-Aug-2015
"Stem cell tourism" is a rising Internet-based industry that aims to offer unproven procedures to patients with incurable diseases. This unregulated activity is reaching the neurologist's office as well as across the world, as patients request information or clearance for such procedures. Herein, we posit the need for medical societies and licensing boards to bring this issue to the forefront of neurology because it has the potential to affect patient care with risk of morbidity and mortality, as well as to undermine public confidence in legitimate stem cell research for incurable neurological diseases such as multiple sclerosis and amyotrophic lateral sclerosis.
Monitoring Central Venous Catheter Resistance to Predict Imminent Occlusion: A Prospective Pilot Study.Monday, August 31, 2015
Wolf J, Tang L, Rubnitz JE, Brennan RC, Shook DR, Stokes DC, Monagle P, Curtis N, Worth LJ, Allison K, Sun Y, Flynn PM,
PloS one. 31-8-2015
Clinicaltrials.gov NCT01737554.
The microRNA Repertoire in Enteroendocrine Cells - Identification of miR-375 as a Potential Regulator of the Enteroendocrine Lineage.Monday, August 31, 2015
Knudsen LA, Petersen N, Schwartz TW, Egerod KL,
Endocrinology. 31-Aug-2015
MicroRNAs (miRNAs) are crucial for many biological processes, but their role in the enteroendocrine development and differentiation has been neglected due to the elusive nature of the enteroendocrine cells. However, transgenic mice expressing fluorescent reporter proteins under the control of promoters for Cck, Gpr41 and Lgr5, i.e. two different enteroendocrine markers and a marker for the stem cells, now enables identification and FACS purification of enteroendocrine cells at different stages of their differentiation along the crypt-villus axis. Surprisingly few of the 746 analyzed miRNAs differed in their expression pattern between enteroendocrine and non-enteroendocrine cells of the gut mucosa and between enteroendocrine cells of the crypt versus the villus. Thus, only let-7g-3p, miR-7b-5p (miR-7b) and miR-375-3p (miR-375) were upregulated in the enteroendocrine cells of both the crypt and villus compared to non-enteroendocrine cells, and in situ hybridization confirmed co-localization of miR-375 with the enteroendocrine cells. Finally, functional assays utilizing miR-375 inhibitor and mimetic in organoid cultures revealed miR-375 as a potential regulator of the enteroendocrine lineage. Overexpression of miR-375 inhibited enteroendocrine lineage development, while inhibition of miR-375 stimulated development of enteroendocrine cells in vitro. Thus, through an unbiased expression screening of all miRNA, we find very few miRNA that are differentially expressed in the gastrointestinal mucosa. Of these, miR-375 is found to be both highly expressed and enriched in the enteroendocrine cells. Additionally, miR-375 appears to negatively regulate the development of enteroendocrine cells. Consequently, miR-375 emerges as a potential target to modulate the function of the enteroendocrine system.
Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation.Monday, August 31, 2015
Peláez-García A, Barderas R, Mendes M, Lopez-Lucendo M, Sanchez JC, García de Herreros A, Casal JI,
Data in brief. Sep-2015
The transcription factor (TF) Snail1 is a major inducer of the epithelial-mesenchymal transition (EMT) during embryonic development and cancer progression. Ectopic expression of Snail in murine mesenchymal stem cells (mMSC) abrogated their differentiation to osteoblasts or adipocytes. We used either stable isotopic metabolic labeling (SILAC) for 3T3-L1 cells or isobaric labeling with tandem mass tags (TMT) for mMSC stably transfected cells with Snail1 or control. We carried out a proteomic analysis on the nuclear fraction since Snail is a nuclear TF that mediates its effects mainly through the regulation of other TFs. Proteomics data have been deposited in ProteomeXchange via the PRIDE partner repository with the dataset identifiers PXD001529 and PXD002157 (Vizcaino et al., 2014) [1]. Data are associated with a research article published in Molecular and Cellular Proteomics (Pelaez-Garcia et al., 2015) [2].
Key Roles of Hyaluronan and Its CD44 Receptor in the Stemness and Survival of Cancer Stem Cells.Monday, August 31, 2015
Chanmee T, Ontong P, Kimata K, Itano N,
Frontiers in oncology. 2015
Cancer stem cells (CSCs) represent a unique subpopulation of self-renewing oncogenic cells that drive cancer initiation and progression. CSCs often acquire multidrug and oxidative stress resistance and are thereby thought to be responsible for tumor recurrence following treatment and remission. Although the mechanisms responsible for CSC generation, maintenance, and expansion have become a major focus in cancer research, the molecular characteristics of CSCs remain poorly understood. The stemness and subsequent expansion of CSCs are believed to be highly influenced by changes in microenvironmental signals as well as genetic and epigenetic alterations. Hyaluronan (HA), a major component of the extracellular matrix, has recently been demonstrated to provide a favorable microenvironment for the self-renewal and maintenance of stem cells. HA directly and indirectly affects CSC self-renewal by influencing the behavior of both cancer and stromal cells. For instance, HA in the tumor microenvironment modulates the function of tumor-associated macrophages to support CSC self-renewal, and excessive HA production promotes the acquisition of CSC signatures through epithelial-to-mesenchymal transition. The importance of HA in mediating CSC self-renewal has been strengthened by the finding that interactions between HA and its receptor, CD44, propagate the stemness of CSCs. HA-CD44 interactions evoke a wide range of signals required for CSC self-renewal and maintenance. CD44 also plays a critical role in the preservation and multidrug resistance (MDR) of CSCs by transmitting survival and anti-apoptotic signals. Thus, a better understanding of the molecular mechanisms involved in HA and CD44 control of CSC stemness may help in the design of more effective therapies for cancer patients. In this review, we address the key roles of HA and CD44 in CSC self-renewal and maintenance. We also discuss the involvement of CD44 in the oxidative stress and MDR of CSCs.
Sickle Cell Trait from a Metabolic, Renal, and Vascular Perspective: Linking History, Knowledge, and Health.Monday, August 31, 2015
Thoreson CK, O'Connor MY, Ricks M, Chung ST, Sumner AE,
Journal of racial and ethnic health disparities. Sep-2015
Sickle cell trait (SCT) is at the intersection of genetics, social policy, and medicine. SCT occurs in three-hundred million people worldwide and in approximately 8 % of African-Americans. There has been great debate about the influence of SCT on health. Yet data exist, albeit controversial, which suggest that SCT is associated with metabolic derangements that can lead to sudden death after vigorous physical activity, renal dysfunction, thromboembolic events, and stroke. In addition, it has even been postulated that SCT might enhance the vascular complications of diabetes. This review focuses on (a) the scientific breakthroughs that led to the discovery of hemoglobin S, sickle cell disease, and SCT, (b) the history of screening programs in the United States,
Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease.Monday, August 31, 2015
Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H,
World journal of cardiology. 26-Aug-2015
Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.
Role of ZAC1 in transient neonatal diabetes mellitus and glucose metabolism.Monday, August 31, 2015
Hoffmann A, Spengler D,
World journal of biological chemistry. 26-Aug-2015
Transient neonatal diabetes mellitus 1 (TNDM1) is a rare genetic disorder representing with severe neonatal hyperglycaemia followed by remission within one and a half year and adolescent relapse with type 2 diabetes in half of the patients. Genetic defects in TNDM1 comprise uniparental isodisomy of chromosome 6, duplication of the minimal TNDM1 locus at 6q24, or relaxation of genomically imprinted ZAC1/HYMAI. Whereas the function of HYMAI, a non-coding mRNA, is still unidentified, biochemical and molecular studies show that zinc finger protein 1 regulating apoptosis and cell cycle arrest (ZAC1) behaves as a factor with versatile transcriptional functions dependent on binding to specific GC-rich DNA motives and interconnected regulation of recruited coactivator activities. Genome-wide expression profiling enabled the isolation of a number of Zac1 target genes known to regulate different aspects of β-cell function and peripheral insulin sensitivity. Among these, upregulation of Pparγ and Tcf4 impairs insulin-secretion and β-cell proliferation. Similarly, Zac1-mediated upregulation of Socs3 may attenuate β-cell proliferation and survival by inhibition of growth factor signalling. Additionally, Zac1 directly represses Pac1 and Rasgrf1 with roles in insulin secretion and β-cell proliferation. Collectively, concerted dysregulation of these target genes could contribute to the onset and course of TNDM1. Interestingly, Zac1 overexpression in β-cells spares the effects of stimulatory G-protein signaling on insulin secretion and raises the prospect for tailored treatments in relapsed TNDM1 patients. Overall, these results suggest that progress on the molecular and cellular foundations of monogenetic forms of diabetes can advance personalized therapy in addition to deepening the understanding of insulin and glucose metabolism in general.
Multifunctional facets of retrovirus integrase.Monday, August 31, 2015
Grandgenett DP, Pandey KK, Bera S, Aihara H,
World journal of biological chemistry. 26-Aug-2015
The retrovirus integrase (IN) is responsible for integration of the reverse transcribed linear cDNA into the host DNA genome. First, IN cleaves a dinucleotide from the 3' OH blunt ends of the viral DNA exposing the highly conserved CA sequence in the recessed ends. IN utilizes the 3' OH ends to catalyze the concerted integration of the two ends into opposite strands of the cellular DNA producing 4 to 6 bp staggered insertions, depending on the retrovirus species. The staggered ends are repaired by host cell machinery that results in a permanent copy of the viral DNA in the cellular genome. Besides integration, IN performs other functions in the replication cycle of several studied retroviruses. The proper organization of IN within the viral internal core is essential for the correct maturation of the virus. IN plays a major role in reverse transcription by interacting directly with the reverse transcriptase and by binding to the viral capsid protein and a cellular protein. Recruitment of several other host proteins into the viral particle are also promoted by IN. IN assists with the nuclear transport of the preintegration complex across the nuclear membrane. With several retroviruses, IN specifically interacts with different host protein factors that guide the preintegration complex to preferentially integrate the viral genome into specific regions of the host chromosomal target. Human gene therapy using retrovirus vectors is directly affected by the interactions of IN with these host factors. Inhibitors directed against the human immunodeficiency virus (HIV) IN bind within the active site of IN containing viral DNA ends thus preventing integration and subsequent HIV/AIDS.
Topographic patterns of vascular disease: HOX proteins as determining factors?Monday, August 31, 2015
Visconti RP, Awgulewitsch A,
World journal of biological chemistry. 26-Aug-2015
Steadily increasing evidence supports the idea that genetic diversities in the vascular bed are, in addition to hemodynamic influences, a major contributing factor in determining region-specific cardiovascular disease susceptibility. Members of the phylogenetically highly conserved Hox gene family of developmental regulators have to be viewed as prime candidates for determining these regional genetic differences in the vasculature. During embryonic patterning, the regionally distinct and precisely choreographed expression patterns of HOX transcription factors are essential for the correct specification of positional identities. Apparently, these topographic patterns are to some degree retained in certain adult tissues, including the circulatory system. While an understanding of the functional significance of these localized Hox activities in adult blood vessels is only beginning to emerge, an argument can be made for a role of Hox genes in the maintenance of vessel wall homeostasis and functional integrity on the one hand, and in regulating the development and progression of regionally restricted vascular pathologies, on the other. Initial functional studies in animal models, as well as data from clinical studies provide some level of support for this view. The data suggest that putative genetic regulatory networks of Hox-dependent cardiovascular disease processes include genes of diverse functional categories (extracellular matrix remodeling, transmembrane signaling, cell cycle control, inflammatory response, transcriptional control, etc.), as potential targets in both vascular smooth muscle and endothelial cells, as well as cell populations residing in the adventitia.
DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies.Monday, August 31, 2015
Wang QE,
World journal of biological chemistry. 26-Aug-2015
The identification of cancer stem cells (CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells, CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response (DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.
Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1.Monday, August 31, 2015
Lee R, Reese C, Perry B, Heywood J, Bonner M, Zemskova M, Silver RM, Hoffman S, Tourkina E,
Fibrogenesis & tissue repair. 2015
To the best of our knowledge, this is the first report that the expression and function of CCR1, CCR2, and CCR3 are upregulated in monocytes from healthy AA and from SSc patients via molecular mechanisms involving caveolin-1, Src/Lyn, and MEK/ERK. The results suggest that the migration/recruitment of monocytes and fibrocytes into fibrotic tissues, mediated at least in part by CCR1, CCR2, and CCR3, plays a major role in the progression of lung and skin fibrosis and in the predisposition of AA to fibrotic diseases. Our findings further suggest that chemokine receptors and signaling molecules, particularly caveolin-1, that control their expression/function are promising targets for treating fibrotic diseases.
Different methods for inducing adipose-derived stem cells to differentiate into Schwann-like cells.Monday, August 31, 2015
Gao S, Zheng Y, Cai Q, Wu X, Yao W, Wang J,
Archives of medical science : AMS. 12-Aug-2015
The effect of the modified method to induce ADSCs to differentiate into Schwann-like cells in vitro is superior to that of the Dezawa inducing method.
Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation.Monday, August 31, 2015
Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR, Eshraghi AA,
Frontiers in cellular neuroscience. 2015
Conservation of a patient's residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI) surgery. Although it is well-known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analog insertion. Resident Schwann cells (SC), macrophages, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons (SGN) and expression of regenerative monocytes/macrophages in the cochlea. Accordingly, genes involved in extracellular matrix (ECM) deposition and remodeling were up-regulated in implanted cochleae. Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated SC were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analog into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of the auditory hair cells (HC) and SGN important for hearing after CI surgery.
Activation of LINE-1 retrotransposon increases the risk of epithelial-mesenchymal transition and metastasis in epithelial cancer.Monday, August 31, 2015
Rangasamy D, Lenka N, Ohms S, Dahlstrom JE, Blackburn AC, Board PG,
Current molecular medicine. 31-Aug-2015
Epithelial cancers comprise 80-90% of human cancers. During the process of cancer progression, cells lose their epithelial characteristics and acquire stem-like mesenchymal features that are resistant to chemotherapy. This process, termed the epithelial-mesenchymal transition (EMT), plays a critical role in the development of metastases. Because of the unique migratory and invasive properties of cells undergoing the EMT, therapeutic control of the EMT offers great hope and new opportunities for treating cancer. In recent years, a plethora of genes and noncoding RNAs, including miRNAs, have been linked to the EMT and the acquisition of stem cell-like properties. Despite these advances, questions remain unanswered about the molecular processes underlying such a cellular transition. In this article, we discuss how expression of the normally repressed LINE-1 (or L1) retrotransposons activates the process of EMT and the development of metastases. L1 is rarely expressed in differentiated stem cells or adult somatic tissues. However, its expression is widespread in almost all epithelial cancers and in stem cells in their undifferentiated state, suggesting a link between L1 activity and the proliferative and metastatic behaviour of cancer cells. We present an overview of L1 activity in cancer cells including how genes involved in proliferation, invasive and metastasis are modulated by L1 expression. The role of L1 in the differential expression of the let-7 family of miRNAs (that regulate genes involved in the EMT and metastasis) is also discussed. We also summarize recent novel insights into the role of the L1-encoded reverse transcriptase enzyme in epithelial cell plasticity that suggest it might be a potential therapeutic target that could reverse the EMT and the metastasis-associated stem cell-like properties of cancer cells.
Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.Monday, August 31, 2015
Laurenzana A, Fibbi G, Margheri F, Biagioni A, Luciani C, Del Rosso M, Chillà A,
Current molecular medicine. 31-Aug-2015
Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrow-mobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serine-proteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptor-associated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis.
Blockage of autophagy in C6 glioma cells enhanced radiosensitivity possibly by attenuating DNA-PK-dependent DSB due to limited Ku nuclear translocation and DNA binding.Monday, August 31, 2015
Liu C, He W, Jin M, Li H, Xu H, Liu H, Yang K, Zhang T, Wu G, Ren J,
Current molecular medicine. 31-Aug-2015
Glioblastoma multiforme (GBM) is the most lethal brain tumor and notorious for its resistance to ionizing radiation (IR). Recent evidence suggests that one possible mechanism that enables resistance to IR and protects cells against therapeutic stress is cellular autophagy. The molecular basis for this pro-survival function, however, remains elusive. Herein, we report a molecular mechanism by which IR-induced autophagy accelerates the repair of DNA double-strand breaks (DSB). We demonstrate that IR induces the accumulation of autophagosomes, which is accompanied by elevated expression of autophagy-related genes beclin-1, atg5, atg7, and atg12. Beclin-1 knockdown impaired the induction of IR-mediated autophagy and significantly sensitized glioma cells to radiation therapy in vitro and in vivo. Furthermore, our data is the first to demonstrate that the radiosensitizing effect of beclin-1 knockdown may result from the disruption of nuclear translocation and DNA binding activity of Ku proteins and consequent attenuation of DSB repair. Our findings help advance our understanding of the molecular mechanisms underlying IR-induced autophagy and provide a promising adjunctive therapeutic strategy for the radiosensitization of malignant glioma.
Enhanced antitumor effect of shikonin by inhibiting Endoplasmic Reticulum Stress via JNK/c-Jun pathway in human glioblastosma stem cells.Monday, August 31, 2015
Liu J, Wang P, Xue YX, Li Z, Qu CB, Liu YH,
Biochemical and biophysical research communications. 27-Aug-2015
Though previous study demonstrated that shikonin could exert its antitumor activity by inducing apoptosis and necrosis, the pro-survival mechanisms involved in its antitumor process are still little to know. In the present study, for the first time, we found a protective mechanism was simultaneously activated which caused the reduced sensitivity of glioblastoma stem cells (GSCs) to the cytotoxicity of shikonin. Reduced active caspase-9 expression and enhanced mitochondrial membrane potential (MMP) were intriguingly observed within 24 h treatment by shikonin in GSCs. Further investigation indentified that Endoplasmic Reticulum Stress (ERS) was involved in its antitumor process, which compromised the cytotoxicity of shikonin toward GSCs. Inhibiting ERS by 4-phenylbutyric acid (4-PBA) markedly enhanced the cytotoxicity of shikonin in GSCs. The consistent result was simultaneously observed in the GSCs-xenografted mice. Furthermore, our results identified that JNK/c-Jun pathway was involved in the antitumor process of shikonin, providing a mechanism by which ERS reduced the cytotoxicity of shikonin toward GSCs. Altogether, the novel observation in the present study identified that inhibiting ERS would be an attractive new approach to enhance the therapeutic potency of shikonin toward GSCs.
Osteogenic Growth Peptide promotes osteogenic differentiation of mesenchymal stem cells mediated by LncRNA AK141205-induced upregulation of CXCL13.Monday, August 31, 2015
Li H, Zhang Z, Chen Z, Zhang D,
Biochemical and biophysical research communications. 27-Aug-2015
The aim of present study was to characterize long non-coding RNA (lncRNA) AK141205 as a cellular regulator of osteogenic differentiation of mice mesenchymal stem cells (MSCs) towards osteogenic growth peptide (OGP) stimulation. Mice MSCs cells were isolated, transfected with si-AK141205, pcDNA-AK141205 or control, and stimulated with OGP. The AK141205, CXC chemokine ligand-13 (CXCL13), and osteogenic differentiation-associated parameters were determined by western blotting or quantitative RT-PCR. To determine the role of AK141205/CXCL13 in SMCs osteogenic differentiation, SMCs subjected to co-transfection of pcDNA-AK141205 and si-CXCL13 or si-AK141205 and pcDNA-CXCL13, and were submitted for osteogenic differentiation-associated parameters analyses. The results showed that stimulation of SMCs with OGP induced upregulation of both AK141205 and CXCL13, and osteogenic differentiation of MSCs. Transfection of si-AK141205 partly suppressed OGP-induced formation of calcium salt nodules, alkaline phosphatase (ALP) activity and osteogenic differentiation-associated gene expression, suggesting key regulatory role of AK141205. Analysis of CXCL13 expression in SMCs(pcDNA-AK141205) revealed that AK141205 positively promoted CXCL13 expression via acetylation of H4 histone in the promoter region. This signal transduction was demonstrated to be essential for OGP-induced osteogenic differentiation of MSCs through osteogenic differentiation analysis in simultaneously AK141205/CXCL13 controlled SMCs. In summary, we report a completely novel role of AK141205/CXCL13 as a regulator of OGP-induced osteogenic differentiation of SMCs. Our finding provides a potential therapeutic targeting of AK141205 for enhancing disease-treatment effect of SMCs.
Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting.Monday, August 31, 2015
Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS, Goldman FD, Townes TM,
Cell reports. 26-Aug-2015
Mutations of the Janus family kinase JAK3 gene cause severe combined immunodeficiency (SCID). JAK3 deficiency in humans is characterized by the absence of circulating T cells and natural killer (NK) cells with normal numbers of poorly functioning B cells (T(-)B(+)NK(-)). Using SCID patient-specific induced pluripotent stem cells (iPSCs) and a T cell in vitro differentiation system, we demonstrate a complete block in early T cell development of JAK3-deficient cells. Correction of the JAK3 mutation by CRISPR/Cas9-enhanced gene targeting restores normal T cell development, including the production of mature T cell populations with a broad T cell receptor (TCR) repertoire. Whole-genome sequencing of corrected cells demonstrates no CRISPR/Cas9 off-target modifications. These studies describe an approach for the study of human lymphopoiesis and provide a foundation for gene correction therapy in humans with immunodeficiencies.
VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function.Monday, August 31, 2015
Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC,
Cell reports. 26-Aug-2015
Vacuolar protein sorting-35 (VPS35) is a retromer component for endosomal trafficking. Mutations of VPS35 have been linked to familial Parkinson's disease (PD). Here, we show that specific deletion of the VPS35 gene in dopamine (DA) neurons resulted in PD-like deficits, including loss of DA neurons and accumulation of α-synuclein. Intriguingly, mitochondria became fragmented and dysfunctional in VPS35-deficient DA neurons, phenotypes that could be restored by expressing VPS35 wild-type, but not PD-linked mutant. Concomitantly, VPS35 deficiency or mutation increased mitochondrial E3 ubiquitin ligase 1 (MUL1) and, thus, led to mitofusin 2 (MFN2) degradation and mitochondrial fragmentation. Suppression of MUL1 expression ameliorated MFN2 reduction and DA neuron loss but not α-synuclein accumulation. These results provide a cellular mechanism for VPS35 dysfunction in mitochondrial impairment and PD pathogenesis.
MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3.Monday, August 31, 2015
Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN, Vieira CR, Mulero F, Camara JA, Cronin UP, Perez M, Soriano J, G Galvez B, Castells-Garcia A, Haage V, Raj D, Megias D, Hahn S, Serrano L, Moon A, Aicher A, Heeschen C,
Cell reports. 26-Aug-2015
Conquering obesity has become a major socioeconomic challenge. Here, we show that reduced expression of the miR-25-93-106b cluster, or miR-93 alone, increases fat mass and, subsequently, insulin resistance. Mechanistically, we discovered an intricate interplay between enhanced adipocyte precursor turnover and increased adipogenesis. First, miR-93 controls Tbx3, thereby limiting self-renewal in early adipocyte precursors. Second, miR-93 inhibits the metabolic target Sirt7, which we identified as a major driver of in vivo adipogenesis via induction of differentiation and maturation of early adipocyte precursors. Using mouse parabiosis, obesity in mir-25-93-106b(-/-) mice could be rescued by restoring levels of circulating miRNA and subsequent inhibition of Tbx3 and Sirt7. Downregulation of miR-93 also occurred in obese ob/ob mice, and this phenocopy of mir-25-93-106b(-/-) was partially reversible with injection of miR-93 mimics. Our data establish miR-93 as a negative regulator of adipogenesis and a potential therapeutic option for obesity and the metabolic syndrome.
Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and Embryonic Stem (ES) cells.Monday, August 31, 2015
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM,
Seminars in cell & developmental biology. 28-Aug-2015
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation. [1,2][1,2][1,2]The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disorder appearing as mandibular gingival ulcers.Monday, August 31, 2015
Amorim Pellicioli AC, Luciano AA, Carrinho Ayroza Rangel AL, de Oliveira GR, Santos Silva AR, de Almeida OP, Vargas PA,
Oral surgery, oral medicine, oral pathology and oral radiology. 28-Jul-2015
Posttransplant lymphoproliferative disorders (PTLDs) comprise a spectrum of complications that affect immunocompromised patients following hematopoietic stem cell transplantation or solid organ transplantation. Its incidence varies depending on the transplanted organ, occurring in approximately 2.3% of kidney transplantations. A 31-year-old woman was referred to the Dental Clinic of the State University of Western Paraná for evaluation of an oral lesion. Her medical history revealed a previous diagnosis of hypertension, Epstein-Barr virus (EBV) seropositivity, and kidney transplantation 12 years prior. She was under standard immunosuppressive therapy. Intraoral examination identified a gingival necrotic lesion with extension to the posterior right lower alveolar bone. An incisional biopsy was performed. Histologic examination showed lymphocytic proliferation of cells with small and hyperchromatic nuclei, atypical mitosis, and cells with large and pale nuclei showing prominent nucleoli permeating connective tissue, muscle fibers, and adipocytes. Correlation of clinical, histologic, and immunohistochemical findings led to a diagnosis of polymorphic EBV-associated polymorphic PTLD rich in B and T cells.
Clonogenic assay allows for selection of a primitive mammary epithelial cell population in bovine.Monday, August 31, 2015
Martignani E, Cravero D, Miretti S, Accornero P, Baratta M,
Experimental cell research. 27-Aug-2015
Adult mammary stem cells have been identified in several species including the bovine. They are responsible for the development of the gland and for cyclic remodeling during estrous cycles and pregnancy. Epithelial cell subpopulations exist within the mammary gland. We and others showed previously that the Colony Forming Cell (CFC) assay can be used to detect lineage-restricted mammary progenitors. We carried out CFCs with bovine mammary cells and manually separated colonies with specific morphologies associated with either a luminal or a myoepithelial phenotype. Expression of specific markers was assessed by immunocytochemistry or by flow cytometry to confirm that the manual separation resulted in isolation of phenotipically different cells. When transplanted in recipient immunodeficient mice, we found that only myoepithelial-like colonies gave rise to outgrowths that resembled bovine mammary alveoli, thus proving that adult stem cells were maintained during culture and segregated with myoepithelial cells. After recovery of the cells from the transplanted mice and subsequent progenitor content analysis, we found a tendency to detect a higher progenitor frequency when myoepithelial-like colonies were transplanted. We here demonstrate that bovine adult mammary stem cells can be sustained in short-term culture and that they can be enriched by manually selecting for basal-like morphology.
The coelomic epithelium transcriptome from a clonal sea star, Coscinasterias muricata.Monday, August 31, 2015
Gabre JL, Martinez P, Nilsson Sköld H, Ortega-Martinez O, Abril JF,
Marine genomics. 27-Aug-2015
Coscinasterias is a cosmopolitan genus of large asteroid sea stars with the ability of somatic fission as a clonal reproductive strategy. During fission, the animals tear themselves apart across their central disc, where the lost body parts are regenerated afterwards. Here, we have sequenced and subsequently analysed the transcriptome of the coelomic epithelium of a clonal Coscinasterias muricata specimen from New Zealand. Out of the total 389,768 raw reads, 11,344 contigs were assembled and grouped into functions. Raw read and assembled contig sequences are available at NCBI (BioSample: SAMN03371637), while the annotated assembly can be accessed through the project transcriptome browser (compgen.bio.ub.edu/gbrowse/starfish_transcriptome/). Our data is valuable for future detailed exploration of the coelomic epithelium functions as well as for a better understanding of sea star physiology.
Mitochondrial mechanisms of endothelial dysfunction.Monday, August 31, 2015
Szewczyk A, Jarmuszkiewicz W, Koziel A, Sobieraj I, Nobik W, Lukasiak A, Skup A, Bednarczyk P, Drabarek B, Dymkowska D, Wrzosek A, Zablocki K,
Pharmacological reports : PR. Aug-2015
Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS). The major sources of ROS are NADPH oxidase and mitochondrial respiratory chain complexes. Modulation of mitochondrial energy metabolism in endothelial cells is thought to be a promising target for therapy in various cardiovascular diseases. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial ROS generation and can antagonise oxidative stress-induced endothelial dysfunction. Several studies have revealed the important role of UCP2 in hyperglycaemia-induced modifications of mitochondrial function in endothelial cells. Additionally, potassium fluxes through the inner mitochondrial membrane, which are involved in ROS synthesis, affect the mitochondrial volume and change both the mitochondrial membrane potential and the transport of calcium into the mitochondria. In this review, we concentrate on the mitochondrial role in the cytoprotection phenomena of endothelial cells.
Dysregulated expression of sterol O-acyltransferase 1 (Soat1) in the hair shaft of Hoxc13 null mice.Monday, August 31, 2015
Potter CS, Kern MJ, Baybo MA, Pruett ND, Godwin AR, Sundberg JP, Awgulewitsch A,
Experimental and molecular pathology. 28-Aug-2015
The cholesterol-metabolizing enzyme sterol O-acetyltransferase (SOAT1) is implicated in an increasing number of biological and pathological processes in a number of organ systems, including the differentiation of the hair shaft. While the functional and regulatory mechanisms underlying these diverse functional roles remain poorly understood, the compartment of the hair shaft known as medulla, affected by mutations in Soat, may serve as a suitable model for defining some of these mechanisms. A comparative analysis of mRNA and protein expression patterns of Soat1/SOAT1 and the transcriptional regulator Hoxc13/HOXC13 in postnatal skin of FVB/NTac mice indicated co-expression in the most proximal cells of the differentiating medulla. This finding combined with the significant downregulation of Soat1 expression in postnatal skin of both Hoxc13 gene-targeted and transgenic mice based on previously reported DNA microarray results suggests a potential regulatory relationship between the two genes. Non-detectable SOAT1 expression in the defective hair follicle medulla of Hoxc13(tm1Mrc) mice and evidence for binding of HOXC13 to the Soat1 upstream control region obtained by ChIP assay suggests that Soat1 is a downstream regulatory target for HOXC13 during medulla differentiation.
Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy.Monday, August 31, 2015
Ng SY, Soh BS, Rodriguez-Muela N, Hendrickson DG, Price F, Rinn JL, Rubin LL,
Cell stem cell. 26-Aug-2015
Spinal muscular atrophy (SMA) is caused by mutations in the SMN1 gene. Because this gene is expressed ubiquitously, it remains poorly understood why motor neurons (MNs) are one of the most affected cell types. To address this question, we carried out RNA sequencing studies using fixed, antibody-labeled, and purified MNs produced from control and SMA patient-derived induced pluripotent stem cells (iPSCs). We found SMA-specific changes in MNs, including hyper-activation of the ER stress pathway. Functional studies demonstrated that inhibition of ER stress improves MN survival in vitro even in MNs expressing low SMN. In SMA mice, systemic delivery of an ER stress inhibitor that crosses the blood-brain barrier led to the preservation of spinal cord MNs. Therefore, our study implies that selective activation of ER stress underlies MN death in SMA. Moreover, the approach we have taken would be broadly applicable to the study of disease-prone human cells in heterogeneous cultures.
Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.Monday, August 31, 2015
Ohgushi M, Minaguchi M, Sasai Y,
Cell stem cell. 26-Aug-2015
Human embryonic stem cells (hESCs) can survive and proliferate for an extended period of time in culture, but unlike that of tumor-derived cells, this form of cellular immortality does not depend on genomic aberrations. In this study, we sought to elucidate the molecular basis of this long-term growth property of hESCs. We found that the survival of hESCs depends on the small GTPase Rho and its activator AKAP-Lbc. We show that AKAP-Lbc/Rho signaling sustains the nuclear function of the transcriptional cofactors YAP and TAZ by modulating actin microfilament organization. By inducing reprogramming and differentiation, we found that dependency on this Rho signaling pathway is associated with the pluripotent state. Thus, our findings show that the capacity of hESCs to undergo long-term expansion in vitro is intrinsically coupled to their cellular identity through interconnected molecular circuits that link cell survival to pluripotency.
The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors.Monday, August 31, 2015
Caputo L, Witzel HR, Kolovos P, Cheedipudi S, Looso M, Mylona A, van IJcken WF, Laugwitz KL, Evans SM, Braun T, Soler E, Grosveld F, Dobreva G,
Cell stem cell. 26-Aug-2015
Cardiac stem/progenitor cells hold great potential for regenerative therapies; however, the mechanisms regulating their expansion and differentiation remain insufficiently defined. Here we show that Ldb1 is a central regulator of genome organization in cardiac progenitor cells, which is crucial for cardiac lineage differentiation and heart development. We demonstrate that Ldb1 binds to the key regulator of cardiac progenitors, Isl1, and protects it from degradation. Furthermore, the Isl1/Ldb1 complex promotes long-range enhancer-promoter interactions at the loci of the core cardiac transcription factors Mef2c and Hand2. Chromosome conformation capture followed by sequencing identified specific Ldb1-mediated interactions of the Isl1/Ldb1 responsive Mef2c anterior heart field enhancer with genes that play key roles in cardiac progenitor cell function and cardiovascular development. Importantly, the expression of these genes was downregulated upon Ldb1 depletion and Isl1/Ldb1 haplodeficiency. In conclusion, the Isl1/Ldb1 complex orchestrates a network for heart-specific transcriptional regulation and coordination in three-dimensional space during cardiogenesis.
Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease.Monday, August 31, 2015
Hamilton LK, Dufresne M, Joppé SE, Petryszyn S, Aumont A, Calon F, Barnabé-Heider F, Furtos A, Parent M, Chaurand P, Fernandes KJ,
Cell stem cell. 26-Aug-2015
Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs.
Hopx and the Cardiomyocyte Parentage.Monday, August 31, 2015
Schneider MD, Baker AH, Riley P,
Molecular therapy : the journal of the American Society of Gene Therapy. Sep-2015
Interleukin-25 Mediates Transcriptional Control of PD-L1 via STAT3 in Multipotent Human Mesenchymal Stromal Cells (hMSCs) to Suppress Th17 Responses.Monday, August 31, 2015
Wang WB, Yen ML, Liu KJ, Hsu PJ, Lin MH, Chen PM, Sudhir PR, Chen CH, Chen CH, Sytwu HK, Yen BL,
Stem cell reports. 26-Aug-2015
Multipotent human mesenchymal stromal cells (hMSCs) harbor immunomodulatory properties that are therapeutically relevant. One of the most clinically important populations of leukocytes is the interleukin-17A (IL-17A)-secreting T (Th17) lymphocytes. However, mechanisms of hMSC and Th17 cell interactions are incompletely resolved. We found that, along with Th1 responses, hMSCs strongly suppressed Th17 responses and this required both IL-25-also known as IL-17E-as well as programmed death ligand-1 (PD-L1), a potent cell surface ligand for tolerance induction. Knockdown of IL-25 expression in hMSCs abrogated Th17 suppression in vitro and in vivo. However, IL-25 alone was insufficient to significantly suppress Th17 responses, which also required surface PD-L1 expression. Critically, IL-25 upregulated PD-L1 surface expression through the signaling pathways of JNK and STAT3, with STAT3 found to constitutively occupy the proximal region of the PD-L1 promoter. Our findings demonstrate the complexities of hMSC-mediated Th17 suppression, and highlight the IL-25/STAT3/PD-L1 axis as a candidate therapeutic target.
A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy.Monday, August 31, 2015
Ando M, Nishimura T, Yamazaki S, Yamaguchi T, Kawana-Tachikawa A, Hayama T, Nakauchi Y, Ando J, Ota Y, Takahashi S, Nishimura K, Ohtaka M, Nakanishi M, Miles JJ, Burrows SR, Brenner MK, Nakauchi H,
Stem cell reports. 26-Aug-2015
The discovery of induced pluripotent stem cells (iPSCs) has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9) into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID) initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL) therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.
Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors.Monday, August 31, 2015
Eberhardt E, Havlicek S, Schmidt D, Link AS, Neacsu C, Kohl Z, Hampl M, Kist AM, Klinger A, Nau C, Schüttler J, Alzheimer C, Winkler J, Namer B, Winner B, Lampert A,
Stem cell reports. 26-Aug-2015
Human pluripotent stem cells (hPSCs) offer the opportunity to generate neuronal cells, including nociceptors. Using a chemical-based approach, we generated nociceptive sensory neurons from HUES6 embryonic stem cells and retrovirally reprogrammed induced hPSCs derived from fibroblasts. The nociceptive neurons expressed respective markers and showed tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) voltage-gated sodium currents in patch-clamp experiments. In contrast to their counterparts from rodent dorsal root ganglia, TTXr currents of hPSC-derived nociceptors unexpectedly displayed a significantly more hyperpolarized voltage dependence of activation and fast inactivation. This apparent discrepancy is most likely due to a substantial expression of the developmentally important sodium channel NAV1.5. In view of the obstacles to recapitulate neuropathic pain in animal models, our data advance hPSC-derived nociceptors as a better model to study developmental and pathogenetic processes in human nociceptive neurons and to develop more specific small molecules to attenuate pain.
Preferential Propagation of Competent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme.Monday, August 31, 2015
Tanigawa S, Sharma N, Hall MD, Nishinakamura R, Perantoni AO,
Stem cell reports. 26-Aug-2015
Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix. Passaged MM cells express the key stem cell regulators Six2 and Pax2 and remain competent to respond to WNT4 induction and form mature tubular epithelia and glomeruli. Mechanistically, LIF activates STAT, which binds to a Stat consensus sequence in the Six2 proximal promoter and sustains SIX2 levels. ROCKi, on the other hand, attenuates the LIF-induced differentiation activity of JNK. Concomitantly, the combination of LIF/ROCKi upregulates Slug expression and activates YAP, which maintains SIX2, PAX2, and SALL1. Using this novel model, our study underscores the pivotal roles of SIX2 and YAP in MM stem cell stability.
CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons.Monday, August 31, 2015
Aravantinou-Fatorou K, Ortega F, Chroni-Tzartou D, Antoniou N, Poulopoulou C, Politis PK, Berninger B, Matsas R, Thomaidou D,
Stem cell reports. 26-Aug-2015
Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein expression studies revealed a reciprocal feedback loop existing between the two molecules, while knockdown of endogenous CEND1 demonstrated that it is a key mediator of NEUROG2-driven neuronal reprogramming. Our data suggest that common reprogramming mechanisms exist driving the conversion of lineage-distant somatic cell types to neurons and reveal a critical role for CEND1 in NEUROG2-driven astrocytic reprogramming.
Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency.Monday, August 31, 2015
Qiu D, Ye S, Ruiz B, Zhou X, Liu D, Zhang Q, Ying QL,
Stem cell reports. 26-Aug-2015
Activation of Wnt/β-catenin signaling can induce both self-renewal and differentiation in naive pluripotent embryonic stem cells (ESCs). To gain insights into the mechanism by which Wnt/β-catenin regulates ESC fate, we screened and characterized its downstream targets. Here, we show that the self-renewal-promoting effect of Wnt/β-catenin signaling is mainly mediated by two of its downstream targets, Klf2 and Tfcp2l1. Forced expression of Klf2 and Tfcp2l1 can not only induce reprogramming of primed state pluripotency into naive state ESCs, but also is sufficient to maintain the naive pluripotent state of ESCs. Conversely, downregulation of Klf2 and Tfcp2l1 impairs ESC self-renewal mediated by Wnt/β-catenin signaling. Our study therefore establishes the pivotal role of Klf2 and Tfcp2l1 in mediating ESC self-renewal promoted by Wnt/β-catenin signaling.
Combination of anti-angiogenesis agents and transarterial embolization: Is it a promising approach for the treatment of liver cancer?Monday, August 31, 2015
Wang Z, Zhou W, Zhang H, Qiao L,
Discovery medicine. Aug-2015
Primary liver cancer is one of the most common malignant tumors worldwide, and the incidence and mortality rates in many Western countries are on the rise. Only a small percentage of liver cancer patients are suitable for curative therapy such as surgical resection and liver transplantation, leaving the majority of patients with palliative options. However, advanced liver cancer is generally resistant to the currently available treatments such as chemotherapy and radiotherapy. Thus, the conventional treatments only have limited effects for patients with liver cancer. Considering the unique dual blood supply system of the liver, and the important role of angiogenesis in the development of primary liver cancer, combination of transarterial embolization (TAE) or transarterial chemoembolization (TACE) with molecular drugs targeting angiogenesis may hold a great therapeutic potential.
The immunomodulation to diabetes control: New proposals for the reversion of this disease.Monday, August 31, 2015
Mâncio RD, Minatel E, de Almeida Cardoso M, Ali Khan B, José Caldeira E,
Diabetes & metabolic syndrome. 21-Aug-2015
The diabetes mellitus is a metabolic disorder, characterized by the hyperglycemia with deficiency in the use of carbohydrates, fats and proteins, resultant of the impairment in secretion and/or insulin action. Severely, the type 1 diabetes provokes the compromise of several organs, causing different disorders and until death of patient. In this way, the literature has shown the general treatments for the type 1 diabetes and currently the focus in immunotherapy and/or immunomodulation, to control of this hyperglycemic condition. The use of new therapies is necessary due to the high increase of incidence of this disease around the world. Recent studies showed an increase of 40% in the cases since 1997. This disease affects different organs, including the glandular tissues, mainly the pancreas. Despite all therapies for diabetes control, the damages occurred remain irreversible. Thus, in addition to general treatments, the use of immunotherapy may open new perspectives for treatment of this disease. Within this aspect, the anti-CD3 monoclonal antibodies may be effective, mainly by protect and maintain the pancreatic acinar cells. Thus, these treatments based in the immunomodulation can be an option for diabetes control and to reverse the damage caused by this disease.
CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes.Monday, August 31, 2015
Bechler ME, Byrne L, Ffrench-Constant C,
Current biology : CB. 26-Aug-2015
Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions [1-3]. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization [4]. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length [1, 5, 6], as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths [7, 8]. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths [9-12]. We test this alternative signal-independent hypothesis-that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.
Biogenesis, delivery, and function of extracellular RNA.Monday, August 31, 2015
Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, Ansel KM, Blelloch R, Goga A, Huang B, L'Etoille N, Raffai RL, Lai CP, Krichevsky AM, Mateescu B, Greiner VJ, Hunter C, Voinnet O, McManus MT,
Journal of extracellular vesicles. 2015
The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.
Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium.Monday, August 31, 2015
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Cavaller BM, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S,
Journal of extracellular vesicles. 2015
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa.Monday, August 31, 2015
Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan YX, Al Bughaili M, Lin AE, Sahai I, Bahena P, Reichert SL, Loh A, Wright GD, Liu J, Rahikkala E, Pivnick EK, Choudhri AF, Krüger U, Zemojtel T, van Ravenswaaij-Arts C, Mostafavi R, Stolte-Dijkstra I, Symoens S, Pajunen L, Al-Gazali L, Meierhofer D, Robinson PN, Mundlos S, Villarroel CE, Byers P, Masri A, Robertson SP, Schwarze U, Callewaert B, Reversade B, Kornak U,
American journal of human genetics. 26-Aug-2015
Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.
The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction.Monday, August 31, 2015
Koh SH, Lo EH,
Journal of clinical neurology (Seoul, Korea). 21-Aug-2015
Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction.
Mesoporous carbon-enriched palladium nanostructures with redox activity for enzyme-free electrochemical immunoassay of brevetoxin B.Monday, August 31, 2015
Lin Y, Zhou Q, Lin Y, Lu M, Tang D,
Analytica chimica acta. 5-Aug-2015
A new signal amplification strategy based on mesoporous carbon-enriched palladium nanostructure (MSC-PdNS) was designed for enzyme-free electrochemical immunoassay of brevetoxin B (BTB) in marine toxins. The assay was carried out on a BTB-bovine serum albumin-functionalized electrode by using monoclonal mouse anti-BTB-labeling MSC-PdNS as the signal-transduction tag. A competitive-type assay protocol was successfully introduced to develop a high-efficiency enzyme-free immunoassay accompanying the doped palladium nanostructure into MSC-PdNS toward reduction of H2O2. Under the optimal conditions, the catalytic current decreased with the increment of BTB concentration in the range from 0.01 to 10 ng mL(-1) with a detection limit (LOD) of 5.0 pg mL(-1) BTB at the 3sblank criterion. The selectivity and precision were acceptable. In addition, the methodology was further validated for assaying spiked seafood samples, and consistent results between the electrochemical immunoassay and the referenced enzyme immunoassay were obtained. Importantly, the enzyme-free electrochemical immunoassay provides a promising approach for rapid screening of marine toxin because of its simplicity, low cost, sensitivity, specificity and without the need of sample pretreatment.
New equations to calculate 3D joint centres in the lower extremities.Monday, August 31, 2015
Sandau M, Heimbürger RV, Villa C, Jensen KE, Moeslund TB, Aanæs H, Alkjær T, Simonsen EB,
Medical engineering & physics. 25-Aug-2015
Biomechanical movement analysis in 3D requires estimation of joint centres in the lower extremities and this estimation is based on extrapolation from markers placed on anatomical landmarks. The purpose of the present study was to quantify the accuracy of three established set of equations and provide new improved equations to predict the joint centre locations. The 'true' joint centres of the knee and ankle joint were obtained in vivo by MRI scans on 10 male subjects whereas the 'true' hip joint centre was obtained in 10 male and 10 female cadavers by CT scans. For the hip joint the errors ranged from 26.7 (8.9) to 29.6 (7.5) mm, for the knee joint 5.8 (3.1) to 22.6 (3.3) mm and for the ankle joint 14.4 (2.2) to 27.0 (4.6) mm. This differed significantly from the improved equations by which the error for the hip joint ranged from 8.2 (3.6) to 11.6 (5.6) mm, for the knee joint from 2.9 (2.1) to 4.7 (2.5) mm and for the ankle joint from 3.4 (1.3) to 4.1 (2.0) mm. The coefficients in the new hip joint equations differed significantly between sexes. This difference depends on anatomical differences of the male and female pelvis.
Antiplasmodial And Cytotoxic Activities Of The Constituents Of Turraea Robusta And Turraea Nilotica.Monday, August 31, 2015
Irungu BN, Adipo N, Orwa JA, Kimani F, Heydenreich M, Midiwo JO, Martin Björemark P, Håkansson M, Yenesew A, Erdélyi M,
Journal of ethnopharmacology. 27-Aug-2015
From the medicinal plants Turraea robusta and Turraea nilotica, twelve compounds were isolated and characterized; two of the isolated compounds, namely 11-epi-toonacilin and azadironolide showed good antiplasmodial activity with the highest selectivity indices.
Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage.Monday, August 31, 2015
Song X, Dai D, He X, Zhu S, Yao Y, Gao H, Wang J, Qu F, Qiu J, Wang H, Li X, Shen N, Qian Y,
Immunity. 24-Aug-2015
The intestinal epithelial barrier plays a critical role in the mucosal immunity. However, it remains largely unknown how the epithelial barrier is maintained after damage. Here we show that growth factor FGF2 synergized with interleukin-17 (IL-17) to induce genes for repairing of damaged epithelium. FGF2 or IL-17 deficiency resulted in impaired epithelial proliferation, increased pro-inflammatory microbiota outgrowth, and consequently worse pathology in a DSS-induced colitis model. The dysregulated microbiota in the model induced transforming growth factor beta 1 (TGFβ1) expression, which in turn induced FGF2 expression mainly in regulatory T cells. Act1, an essential adaptor in IL-17 signaling, suppressed FGF2-induced ERK activation through binding to adaptor molecule GRB2 to interfere with its association with guanine nucleotide exchange factor SOS1. Act1 preferentially bound to IL-17 receptor complex, releasing its suppressive effect on FGF2 signaling. Thus, microbiota-driven FGF2 and IL-17 cooperate to repair the damaged intestinal epithelium through Act1-mediated direct signaling cross-talk.
In situ strategy for bone repair by facilitated endogenous tissue engineering.Monday, August 31, 2015
Chen J, Zhang Y, Pan P, Fan T, Chen M, Zhang Q,
Colloids and surfaces. B, Biointerfaces. 20-Aug-2015
Traditional tissue engineering procedures are expensive and time consuming. Facilitated endogenous tissue engineering (FETE) provides a solution that can avoid the ex vivo culture of autologous cells and initiate in situ reparative endogenous repair processes in vivo. This method involves fabricating a porous scaffold that mimics the environment present during the bone formation process, consisting of components that provide biomimetic interfacial interactions to cells. After the scaffold is implanted, progenitor cells provided by autologous bone marrow and surrounding tissues then differentiate to bone cells under the direction of the in situ scaffold. This paper reports a biomimetic method to prepare a hierarchically structured hybrid scaffold. Bone-like nano hydroxyapatite (HA) was crystallized from a collagen and chitosan (CC) matrix to form a porous scaffold. The in vivo study demonstrates that this nanohybrid scaffold supports excellent bone repair. This means that the FETE approach, in which the cell culture portion of traditional tissue engineering takes place in vivo, can promote the intrinsic regenerative potential of endogenous tissues.
PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency.Monday, August 31, 2015
Rey-Rico A, Venkatesan JK, Frisch J, Rial-Hermida I, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M,
Acta biomaterialia. 27-Aug-2015
Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine.
Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression.Monday, August 31, 2015
Verbovšek U, Van Noorden CJ, Lah TT,
Seminars in cancer biology. 27-Aug-2015
Proteases, including lysosomal cathepsins are functionally involved in many processes in cancer progression, from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts, appeared to be also overexpressed in various types of cancers. In this review, the physiological functions of CatK are presented and compared to its potential role in pathobiolology of processes associated with the tumour growth, invasion and metastasis of cancer cells and their interactions with the tumour microenvironment. CatK activity is either indirectly affecting signalling pathways, or directly degrading extracellular matrix (ECM) proteins, for example in bone metastases. Recently, CatK was also found in glioma, possibly regulating cancer stem-like cell mobilisation and modulating recently found physiological CatK substrates, including chemokines and growth factors. Moreover, CatK may be useful in differential diagnosis and may have prognostic value. Finally, the application of CatK inhibitors, which are already in clinical trials for treatment of osteoporosis, has a potential to attenuate cancer aggressiveness.
TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells.Sunday, August 30, 2015
Lelaidier M, Dìaz-Rodriguez Y, Cordeau M, Cordeiro P, Haddad E, Herblot S, Duval M,
Oncotarget. 22-Jul-2015
Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.
Characterization of the platelet-derived growth factor receptor α-positive cell lineage during murine late lung development.Sunday, August 30, 2015
Ntokou A, Klein F, Dontireddy D, Becker S, Bellusci S, Richardson WD, Szibor M, Braun T, Morty RE, Seeger W, Voswinckel R, Ahlbrecht K,
American journal of physiology. Lung cellular and molecular physiology. 28-Aug-2015
A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor (PDGFR) α-positive (PDGFRα(+)) cell populations during late lung development in mice. PDGFRα(+) cells (detected using a PDGFRα(GFP) reporter line) were noted around the proximal airways during the pseudoglandular stage. In the canalicular stage, PDGFRα(+) cells appeared in the more distal mesenchyme, and labeled α-smooth muscle actin-positive tip cells in the secondary crests and lipofibroblasts in the primary septa during alveolarization. Some PDGFRα(+) cells appeared in the mesenchyme of the adult lung. Over the course of late lung development, PDGFRα(+) cells consistently expressed collagen I, and transiently expressed markers of mesenchymal stem cells. Using both, a constitutive as well as a conditional PDGFRα(Cre) line, it was observed that PDGFRα(+) cells generated alveolar myofibroblasts including tip cells of the secondary crests, and lipofibroblasts. These lineages were committed before secondary septation. The present study provides new insights into the time-dependent commitment of the PDGFRα(+) cell lineage to lipofibroblasts and myofibroblasts during late lung development which is needed to better understand the cellular contribution to the process of alveolarization.
CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling.Sunday, August 30, 2015
Arnaud MP, Vallée A, Robert G, Bonneau J, Leroy C, Varin-Blank N, Rio AG, Troadec MB, Galibert MD, Gandemer V,
Blood. 28-Aug-2015
CD9, a member of the tetraspanin family, has been implicated in hematopoietic and leukemic stem cell homing. We investigated the role of CD9 in the dissemination of B acute lymphoblastic leukemia (B-ALL) cells, by stably downregulating CD9 in REH and NALM6 cells. CD9 expression was associated with higher levels of REH cell adhesion to fibronectin and CXCR4-mediated migration. Death occurred later in NOD/SCID mice receiving for transplantation REH cells depleted of CD9 than in mice receiving control cells. After CXCL12 stimulation, CD9 promoted the formation of long cytoplasmic actin-rich protrusions. We demonstrated that CD9 enhanced RAC1 activation, in both REH cells and blasts from patients. Conversely, the overexpression of a competing CD9 C-terminal tail peptide in REH cytoplasm decreased RAC1 activation and cytoplasmic extension formation in response to CXCL12. Finally, the inhibition of RAC1 activation decreased migration in vitro, and the depletion of RAC1 protein from transplanted REH cells increased mouse survival. Furthermore, a testis-conditioned medium induced the migration of REH and NALM6 cells, and this migration was impeded by an anti-CD9 antibody. The level of CD9 expression also influenced the homing of these cells in mouse testes. These findings demonstrate, for the first time, that CD9 plays a key role in the CXCR4-mediated migration and engraftment of B-ALL cells in the bone marrow or testis, through RAC1 activation.
EHMT1 and EHMT2 inhibition induce fetal hemoglobin expression.Sunday, August 30, 2015
Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, Holson EB, Bernstein BE, Orkin SH, Bauer DE, Ebert BL,
Blood. 28-Aug-2015
Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 shRNA-mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in the expression of embryonic β-globin genes, Hbb-ϵy and Hbb-βh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to a genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with a histone deacetylase inhibitor, entinostat, or a hypomethylating agent, decitabine. Our data provide genetic and pharmacological evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD.
Immune Modulation in Hematologic Malignancies.Monday, August 31, 2015
Dhodapkar MV, Dhodapkar KM,
Seminars in oncology. Aug-2015
The therapeutic potential of the immune system in the context of hematologic malignancies has long been appreciated particularly due to the curative impact of allogeneic hematopoietic stem cell transplantation (SCT). The role of immune system in shaping the biology and evolution of these tumors is now well recognized. While the contribution of the immune system in anti-tumor effects of certain therapies such as immune-modulatory drugs and monoclonal antibodies active in hematologic malignancies is quite evident, the immune system has also been implicated in anti-tumor effects of other targeted therapies. The horizon of immune-based therapies in hematologic malignancies is rapidly expanding with promising results from immune-modulatory drugs, immune-checkpoint blockade, and adoptive cellular therapies, including genetically-modified T cells. Hematologic malignancies present distinct issues (relative to solid tumors) for the application of immune therapies due to differences in cell of origin/developmental niche of tumor cells, and patterns of involvement such as common systemic involvement of secondary lymphoid tissues. This article discusses the rapidly changing landscape of immune modulation in hematologic malignancies and emphasizes areas wherein hematologic malignancies present distinct opportunities for immunologic approaches to prevent or treat cancer.
The Hematopoietic System in the Context of Regenerative Medicine.Sunday, August 30, 2015
Porada CD, Atala AJ, Almeida-Porada G,
Methods (San Diego, Calif.). 25-Aug-2015
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Aldehyde dehydrogenases and cancer stem cells.Sunday, August 30, 2015
Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, Wang K,
Cancer letters. 26-Aug-2015
Aldehyde dehydrogenases (ALDHs), as essential regulators of aldehyde metabolism in the human body, protect organisms from damage induced by active aldehydes. Given their roles in different cancer types, ALDHs have been evaluated as potential prognostic markers of cancer. ALDHs exhibit high activity in cancer stem cells (CSCs) and may serve as markers of CSCs. Moreover, studies indicated that ALDHs and their regulated retinoic acid, reactive oxygen species and reactive aldehydes metabolism were strongly related with various properties of CSCs. Besides, recent research evidences have demonstrated the transcriptional and post-translational regulation of ALDH expression and activation in CSCs. Thus, this review focuses on the function and regulation of ALDHs in CSCs, particularly ALDH1A1 and ALDH1A3.
Effect In Vitro of Antiparasitic Drugs on Microbial Inhibitor Test Responses for Screening Antibiotic Residues in Goat's Milk.Monday, August 31, 2015
Romero T, Beltrán MC, Reybroeck W, Molina MP,
Journal of food protection. Sep-2015
Microbial inhibitor tests are widely used to screen antibiotic residues in milk; however, these tests are nonspecific and may be affected by various substances capable of inhibiting the growth of the test microorganism. The objective of this study was to determine the effect of antiparasitic drugs in goat's milk on the microbial inhibitor test response. Raw antibiotic-free milk from Murciano-Granadina goats was supplemented with eight concentrations of seven antiparasitic substances (albendazole, 10 to 170 mg/kg; closantel, 1 to 140 mg/kg; diclazuril, 8 to 45 mg/kg; febendazole, 10 to 140 mg/kg; levamisole, 40 to 440 mg/kg; diazinon, 8 to 45 mg/kg; and ivermectin, 40 to 200 mg/kg). Twelve replicates for each concentration were analyzed with three microbial inhibitor tests: BRT MRL, Delvotest SP-NT MSC, and Eclipse 100. The results were interpreted visually (negative or positive). Using a logistic regression model, the concentrations of the antiparasitic drugs producing 5% (IC5), 10% (IC10), and 50% (IC50) positive results were determined. In general, the Eclipse 100 test was less sensitive to the effect of antiparasitic substances; the inhibitory concentrations of almost all the drugs assayed were higher than those for other tests. Conversely, the BRT MRL test was most affected, with high levels of interference at lower antiparasitic drug concentrations. Closantel and diazinon interfered with all microbial tests at lower concentrations than did other drugs (IC5 = 1 to 26 and 12 to 20 mg/kg, respectively), and higher concentrations of levamisole and diclazuril (IC5 = 30 to 240 and 50 to 117 mg/kg, respectively) were required to produce 5% positive results. These findings indicate that microbial inhibitor tests can be affected by elevated concentrations of antiparasitic drugs in goat's milk.
Structural basis of Cu, Zn-superoxide dismutase amyloid fibril formation involves interaction of multiple peptide core regions.Sunday, August 30, 2015
Ida M, Ando M, Adachi M, Tanaka A, Machida K, Hongo K, Mizobata T, Yamakawa MY, Watanabe Y, Nakashima K, Kawata Y,
Journal of biochemistry. 29-Aug-2015
Cu, Zn-superoxide dismutase (SOD1), an enzyme implicated in the progression of familial amyotrophic lateral sclerosis (fALS), forms amyloid fibrils under certain experimental conditions. As part of our efforts to understand ALS pathogenesis, in this study we found that reduction of the intramolecular disulfide bond destabilized the tertiary structure of metal free wild-type SOD1 and greatly enhanced fibril formation in vitro. We also identified fibril core peptides that are resistant to protease digestion by using mass-spectroscopy and Edman degradation analyses. Three regions dispersed throughout the sequence were detected as fibril core sequences of SOD1. Interestingly, by using three synthetic peptides that correspond to these identified regions, we determined that each region was capable of fibril formation, either alone or in a mixture containing multiple peptides. It was also revealed that by reducing the disulfide bond and causing a decrease in the structural stability, the amyloid fibril formation of a familial mutant SOD1 G93A was accelerated even under physiological conditions. These results demonstrate that by destabilizing the structure of SOD1 by removing metal ions and breaking the intramolecular disulfide bridge, multiple fibril-forming core regions are exposed, which then interact with each another and form amyloid fibrils under physiological conditions.
Identification and Characterization of a Synthetic Osteogenic Peptide.Sunday, August 30, 2015
Komatsu DE, Hadjiargyrou M, Udin SM, Trasolini NA, Pentyala S,
Calcified tissue international. 29-Aug-2015
Osteoporosis is the most common metabolic bone disorder and its management represents a tremendous public health encumbrance. While several classes of therapeutics have been approved to treat this disease, all are associated with significant adverse effects. An algorithm was developed and utilized to discover potential bioactive peptides, which led to the identification of an osteogenic peptide that mapped to the C-terminal region of the calcitonin receptor and has been named calcitonin receptor fragment peptide (CRFP). In vitro treatment of human mesenchymal stem cells with CRFP resulted in dose-specific effects on both proliferation and osteoblastic differentiation. Similarly, in vitro treatment of rat RCJ3.1C5.18 cells led to dose- and species-specific effects on proliferation. A rat ovariectomy (OVX) model was used to assess the potential efficacy of CRFP in treating osteoporosis. MicroCT analysis of distal femoral samples showed that OVX rats treated with CRFP were significantly protected from losses of 55 % in trabecular bone volume fraction (BVF), 42 % in connectivity density, and 18 % in trabecular thickness in comparison to vehicle-treated controls. MicroCT analyses of vertebrae revealed CRFP to significantly prevent a 25 % reduction in BVF. MicroCT evaluation of femoral and vertebral cortical bone found a significant reduction of 2 % in vertebral bone mineral density. In summary, our in vitro studies indicate that CRFP is both bioactive and osteogenic and our in vivo studies indicate that CRFP is skeletally bioactive. These promising data indicate that further in vitro and in vivo evaluation of CRFP as a new treatment for osteoporosis is warranted.
Transgenic DNA modules with pre-programmed self-destruction: Universal molecular devices to escape 'genetic litter' in gene and cell therapy.Sunday, August 30, 2015
Tolmachov OE,
Medical hypotheses. 22-Aug-2015
Gene delivery to human somatic cells is a well-established therapeutic strategy to treat a variety of diseases. In addition, gene transfer to human cells is required to generate human induced pluripotent cells and also to eliminate tumorigenic undifferentiated cells in many types of stem-cell derived transplantation material. The expression of transgenes in these medical technologies is often required only in some of the recipient cells and only in specific limited time-windows, with inappropriately located or untimely expressed transgenes presenting a risk of undesired collateral effects. Unfortunately, current gene transfer procedures commonly result in a number of cells in the patient's body containing fragments of transferred genetic material which are either not therapeutically necessary at all, are no longer necessary or are necessary but in some other cells. Such transgenic material in the patient, created as a by-product of the chosen therapeutic procedure, constitutes, in fact, 'genetic litter', that is, persisting potentially-hazardous foreign genetic material which is neither required therapeutically nor explicitly chosen by an informed and free-willing person as an artificial body element. Wider use and more frequent administration of gene and cell therapy in the future are likely to give greater prominence to the issue of misdelivered genetic medicines and of their unwanted remainders accumulating in human bodies. Thus, novel DNA templates, which, on the one hand, are capable of providing transgene expression over broad time-windows, and, on the other hand, do not leave unwanted permanent 'genetic traces', are required. I propose that the problem of 'genetic litter' in patients' bodies can be addressed through the employment of a new type of gene vectors delivering DNA-based transgenic modules with pre-programmed self-destruction. Such vectors could deliver therapeutic DNA cargo and then execute self-liquidation through pre-scheduled activation of co-delivered genome editing tools, such as CRISPR/Cas9 nucleases, specific for the DNA to be eliminated. In this model, all unnecessary transgenic DNA is edited away precisely at a desired time point. Activity of the gene correction apparatus for the specific and effective destruction of transgenic DNA could be turned on by well-timed external signals or could be triggered through intracellular sensors of particular epigenetic signatures. It is expected that the employment of the proposed DNA-based gene vectors equipped with a transgene self-destruct mechanism can extend the safe and ethical application of gene and cell therapy to a broader range of curative and lifestyle-choice medical treatments, e.g., full body prophylactic gene therapy of cancer.
Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells.Sunday, August 30, 2015
Cordeiro IR, Lopes DV, Abreu JG, Carneiro K, Rossi MI, Brito JM,
Biology open. 28-Aug-2015
Human adipose-derived stromal cells (hADSC) are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1) regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.
Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities.Monday, August 31, 2015
Wang XM, Yik WY, Zhang P, Lu W, Huang N, Kim BR, Shibata D, Zitting M, Chow RH, Moser AB, Steinberg SJ, Hacia JG,
Stem cell research & therapy. 2015
Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders.
Reflections inspired by the debate on conventional and off-pump coronary artery bypass graft.Monday, August 31, 2015
Hu S, Yuan X,
The Journal of thoracic and cardiovascular surgery. Sep-2015
Using Patient-Derived Induced Pluripotent Stem Cells to Model and Treat Epilepsies.Monday, August 31, 2015
Du X, Parent JM,
Current neurology and neuroscience reports. Oct-2015
Human induced pluripotent stem cells (iPSCs) are transforming the fields of disease modeling and precision therapy. For the treatment of neurological disorders, iPSCs introduce the possibility for targeted cell-based therapies by deriving patient-specific neural tissue in vitro that may ultimately be used for transplantation. We review iPSC technologies and their applications that have already advanced our understanding of neurological disorders, focusing on the epilepsies. We also discuss the application of powerful new tools such as genome editing and multi-well, multi-electrode array recording platforms to iPSC disease modeling and therapy development for the epilepsies. Despite some limitations, the field of iPSCs is evolving rapidly and is quickly becoming vital for understanding mechanisms of genetic epilepsies and for future patient-specific therapeutic applications.
Power-Assisted Liposuction Versus Tissue Resection for the Isolation of Adipose Tissue-Derived Mesenchymal Stem Cells: Phenotype, Senescence, and Multipotency at Advanced Passages.Monday, August 31, 2015
Barzelay A, Levy R, Kohn E, Sella M, Shani N, Meilik B, Entin-Meer M, Gur E, Loewenstein A, Barak A,
Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. Sep-2015
Fat harvested by PAL or tissue resection yielded uniform cultures of ASCs with high division rates, low senescence ratios, and multipotency preserved into passages 3 and 4. Because PAL is less invasive, it may be preferable for the isolation of ASCs.
Zebrafish: An Important Tool for Liver Disease Research.Sunday, August 30, 2015
Goessling W, Sadler KC,
Gastroenterology. 25-Aug-2015
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to liver disease pathogenesis. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development, but are also important to the study of liver disease. Zebrafish embryos develop rapidly-all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury, and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury, as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes, and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases, as well as liver cancer and regeneration.
Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells.Sunday, August 30, 2015
Tan J, Qiu K, Li M, Liang Y,
FEBS letters. 26-Aug-2015
LncRNAs have a critical role in the regulation of cellular processes such as cancer progression and metastasis. In the present study, we confirmed that TUG1 was overexpressed in bladder cancer tissues and established cell lines. Knockdown of TUG1 inhibited bladder cancer cell metastasis both in vitro and in vivo. Furthermore, we found that TUG1 promoted cancer cell invasion and radioresistance through inducing epithelial-to-mesenchymal transition (EMT). Interestingly, TUG1 decreased the expression of miR-145 and there was a reciprocal repression between TUG1 and miR-145 in an Argonaute2-dependent manner. ZEB2 was identified as a down-stream target of miR-145 and TUG1 exerted its function through the miR-145/ZEB2 axis. In summary, our data indicated that blocking TUG1 function may be an effective anti-cancer therapy.
NF-κB signaling in cancer stem cells: a promising therapeutic target?Sunday, August 30, 2015
Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez L, Martínez-Ruiz G, Maldonado V,
Cellular oncology (Dordrecht). 29-Aug-2015
Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.
MRI tracking bone marrow mesenchymal stem cells labeled with ultra-small superparamagnetic iron oxide nanoparticles in a rat model of temporal lobe epilepsy.Sunday, August 30, 2015
Long Q, Li J, Luo Q, Hei Y, Wang K, Tian Y, Yang J, Lei H, Qiu B, Liu W,
Neuroscience letters. 25-Aug-2015
Transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising approach for treatment of epilepsy. To our knowledge, there is little research on magnetic resonance imaging (MRI) tracking of BMSCs labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in a rat model of temporal lobe epilepsy (TLE). In this study, BMSCs were pre-labeled with USPIO nanoparticles, and then the cell apoptosis, proliferation, surface antigens, and multipotency were investigated. Lithium chloride-pilocarpine induced TLE models were administered by USPIO-labeled BMSCs (U-BMSCs), BMSCs, and saline through lateral ventricle injection as the experimental group, control I group and control II group, respectively, followed by MRI examination, electroencephalography (EEG) and Prussian blue staining. The cell experimental results showed that the labeled USPIO did not affect the biological characteristics and multiple potential of BMSCs. The U-BMSCs can be detected using MRI in vitro and in vivo, and observed in the hippocampus and adjacent parahippocampal cortical areas of the epileptic model. Moreover, electroencephalographic results showed that transplanted U-BMSCs, as well as BMSCs, were capable of reducing the number of epileptiform waves significantly (P£¼ 0.01) compared with control II group. All of these findings suggest that it is feasible to track transplanted BMSCs using MRI in a rat model of TLE, and support that USPIO labeling is a valuable tool for cell tracking in the study of seizure disorders.
LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging.Sunday, August 30, 2015
Roy K, Kanwar RK, Kanwar JR,
Biomaterials. 4-Aug-2015
This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.
Biological and MRI characterization of biomimetic ECM scaffolds for cartilage tissue regeneration.Sunday, August 30, 2015
Ravindran S, Kotecha M, Huang CC, Ye A, Pothirajan P, Yin Z, Magin R, George A,
Biomaterials. 20-Aug-2015
Osteoarthritis is the most common joint disorder affecting millions of people. Most scaffolds developed for cartilage regeneration fail due to vascularization and matrix mineralization. In this study we present a chondrogenic extracellular matrix (ECM) incorporated collagen/chitosan scaffold (chondrogenic ECM scaffold) for potential use in cartilage regenerative therapy. Biochemical characterization showed that these scaffolds possess key pro-chondrogenic ECM components and growth factors. MRI characterization showed that the scaffolds possess mechanical properties and diffusion characteristics important for cartilage tissue regeneration. In vivo implantation of the chondrogenic ECM scaffolds with bone marrow derived mesenchymal stem cells (MSCs) triggered chondrogenic differentiation of the MSCs without the need for external stimulus. Finally, results from in vivo MRI experiments indicate that the chondrogenic ECM scaffolds are stable and possess MR properties on par with native cartilage. Based on our results, we envision that such ECM incorporated scaffolds have great potential in cartilage regenerative therapy. Additionally, our validation of MR parameters with histology and biochemical analysis indicates the ability of MRI techniques to track the progress of our ECM scaffolds non-invasively in vivo; highlighting the translatory potential of this technology.
3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair.Sunday, August 30, 2015
Hsieh FY, Lin HH, Hsu SH,
Biomaterials. 17-Aug-2015
The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25-30% PU2 hydrogels (∼680-2400 Pa) had excellent proliferation and differentiation but not in 25-30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering.
Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration.Sunday, August 30, 2015
Wu C, Chen Z, Wu Q, Yi D, Friis T, Zheng X, Chang J, Jiang X, Xiao Y,
Biomaterials. 18-Aug-2015
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
In-situ birth of MSCs multicellular spheroids in poly(l-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration.Sunday, August 30, 2015
Zhang K, Yan S, Li G, Cui L, Yin J,
Biomaterials. 20-Aug-2015
The success of mesenchymal stem cells (MSCs) based articular cartilage tissue engineering is limited by the presence of fibrous tissue in generated cartilage, which is associated with the current scaffold strategy that promotes cellular adhesion and spreading. Here we design a non-fouling scaffold based on amide bonded poly(l-glutamic acid) (PLGA) and chitosan (CS) to drive adipose stem cells (ASCs) to aggregate to form multicellular spheroids with diameter of 80-110 μm in-situ. To illustrate the advantage of the present scaffolds, a cellular adhesive scaffold based on the same amide bonded PLGA and CS was created through a combination of air-drying and freeze-drying to limit the hydration effect while also achieving porous structure. Compared to ASCs spreading along the surface of pores within scaffold, the dense mass of aggregated ASCs in PLGA/CS scaffold exhibited enhanced chondrogenic differentiation capacity, as determined by up-regulated GAGs and COL II expression, and greatly decreased COL I deposition during in vitro chondrogenesis. Furthermore, after 12 weeks of implantation, neo-cartilages generated by ASCs adhered on scaffold significantly presented fibrous matrix which was characterized by high levels of COL I deposition. However, neo-cartilage at 12 weeks post-implantation generated by PLGA/CS scaffold carrying ASC spheroids possessed similar high level of GAGs and COL II and low level of COL I as that in normal cartilage. The in vitro and in vivo results indicated the present strategy could not only promote chondrogenesis of ASCs, but also facilitate hyaline-like cartilage regeneration with reduced fibrous tissue formation which may attenuate cartilage degradation in future long-term follow-up.
Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity.Sunday, August 30, 2015
Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M,
Acta biomaterialia. 26-Aug-2015
Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8 mg/mL). Only ECM concentrations >3 mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution.
An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.Sunday, August 30, 2015
Yoshizawa S, Chaya A, Verdelis K, Bilodeau EA, Sfeir C,
Acta biomaterialia. 26-Aug-2015
Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications.
Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture.Sunday, August 30, 2015
Wu L, Feyerabend F, Schilling AF, Willumeit-Römer R, Luthringer BJ,
Acta biomaterialia. 26-Aug-2015
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30x, 10x, 5x, 3x, 2x and 1x). Phenotype characterization documented that while 2x dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1x dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2x and 1x dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.
Derivation of LIF-independent mouse iPS cells with modified Oct4.Sunday, August 30, 2015
Hirai H, Firpo M, Kikyo N,
Stem cell research. 17-Aug-2015
It has been very difficult, if not impossible, to establish mouse induced pluripotent stem cells (iPSCs) from differentiated cells, such as fibroblasts, without leukemia inhibitory factor (LIF). We have established and maintained LIF-independent iPSCs for longer than 120days with modified Oct4 along with Sox2, Klf4, and c-Myc. The iPSCs will provide a novel tool to investigate the roles of the LIF-Stat3 signaling pathway in mouse pluripotent stem cells.
Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway.Sunday, August 30, 2015
Liu F, Pawliwec A, Feng Z, Yasruel Z, Lebrun JJ, Ali S,
Stem cell research. 11-Aug-2015
Tissue development/remodeling requires modulations in both cellular architecture and phenotype. Aberration in these processes leads to tumorigenesis. During the pregnancy/lactation cycle the mammary epithelial cells undergo complex morphological and phenotypic programs resulting in the acquisition of apical/basal (A/B) polarization and cellular maturation necessary for proper lactation. Still the hormonal regulations and cellular mechanisms controlling these events are not entirely elucidated. Here we show that prolactin (PRL)/Jak2 pathway in mammary epithelial cells uniquely signals to establish A/B polarity as determined by the apical localization of the tight junction protein zona occludens 1 (ZO-1) and the basal/lateral localization of E-cadherin, and the apical trafficking of lipid droplets. As well, our results indicate that this pathway regulates mammary stem cell hierarchy by inducing the differentiation of luminal progenitor (EpCAM(hi)/CD49f(hi)) cells to mature luminal (EpCAM(hi)/CD49f(low)) cells. Moreover, our data indicate that PRL/Jak2 coordinates both of these cellular events through limiting the mitogen activated protein kinase (Erk1/2) pathway. Together our findings define a novel unifying mechanism coupling mammary epithelial cell A/B polarization and terminal differentiation.
Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells.Sunday, August 30, 2015
Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA,
Stem cell research. 13-Aug-2015
To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(6) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.
Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study.Sunday, August 30, 2015
Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG,
Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 26-Aug-2015
Considering the encouraging clinical and MRI outcomes obtained and the significant correlations noted between the clinical and MRI outcomes, MSC implantation seems to be useful for repairing cartilage lesions in OA knees. However, a larger sample size and long-term studies are needed to confirm our findings.
Source: NCBI - Disclaimer and Copyright notice
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!