Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>Videos>This Video


Advance drug discovery by improving dose-response curve set-up

Tecan Group Ltd.

Richard Marcellus, Molecular Biologist, Ontario Institute for Cancer Research Save time and reduce waste while improving data quality for small molecule dose-response curves Titration of small molecules in DMSO is a ubiquitous part of the drug discovery workflow. Traditional methods require serial dilution which can be wasteful in terms of tips, intermediate plates and compounds. This process is also time consuming, and reproducibility from researcher to researcher can be a challenge. Traditionally, laboratories have had to accept the potential for carry-over and accumulated pipetting errors, as well as the high labor costs associated with this task. In addition, many laboratories are not performing scientifically optimal titrations, due to equipment or time restrictions. For example, in vitro drug-drug interaction experiments are often desired, but are too complicated to perform routinely. Low- and medium-throughput laboratories, such as therapeutic or lead optimization departments, cannot always justify the purchase of large automation equipment. Not only can the cost of these systems be prohibitive, they can also impose undesirable limits on assay set-up, and often require specialist knowledge to maintain and program. These laboratories need an affordable solution that meets their demands for flexibility, speed and reliability. Join our webinar as we examine the potential for change in dose-response curve set-up for small molecules in DMSO, leading to time savings and dose and plate layout flexibility for drug discovery biologists. Key Learning Objectives • Explore methods to save time and reduce labor costs when setting up dose-response curves • Save precious compounds and eliminate waste of consumables and reagents • Quickly set up drug-drug interaction experiments, along with other complex plate layouts • Improve data quality in dose-response curves and decrease the number of bioassay wells required Richard C. Marcellus, Ph.D. Biochemist - Ontario Institute for Cancer Research, Toronto, Canada Richard has spent over a decade working in cancer drug discovery and has broad experience ranging from target identification, to assay development and HTS, SPR-based protein-drug interaction analysis, and drug target validation. He currently works in the Medicinal Chemistry Group at the OICR, a translational research institute. Richard runs in vitro assays in support of SAR programs, and has embarked upon a targeted screening program in patient-derived primary cancer cells. In this study drug sensitivity is being combined with RNAi and deep sequencing to identify promising anti-cancer targets.

Request more information
Company product page

Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
MRSA Uses Decoys to Evade a Last-Resort Antibiotic
Researchers at Imperial College London have discovered that MRSA releases decoy molecules that allow them to escape being killed by the antibiotic.
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos