Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

Magneto-plasmonic Nanoparticle Platform for Capture, Separation and Enumeration of Rare Cells
SELECTBIO

Detection of disseminated tumor cells or tumor biomarkers in human fluids such as blood, urine, and saliva can provide an accessible tool for cancer detection and therapy monitoring. In particular, accurate quantitation of cancer cells in the bloodstream can help to determine prognosis and monitor the effectiveness of cancer therapy. However, the challenge of detecting circulating tumor cells (CTCs) is their rare occurrence, estimated as one to few CTCs among millions of leukocytes and billions of erythrocytes. Here we address this challenging problem by developing nanoparticle probes with multiple functionalities. Integration of multiple components in a single nanostructure is a challenging task. Most of the existing approaches to synthesis of hybrid nanoparticles require cumbersome multi-step protocols and result in nanostructures with limited tunability of physical and optical properties. Here, we developed a new type of nanoparticles which consist of primary 6 nm iron oxide core-gold shell nanoparticles that form highly uniform spherical assemblies with sizes that can be varied from ca. 70 to 180 nm. The magneto-plasmonic nanoclusters exhibit strong red-NIR absorbance and superparamagnetic properties with a high magnetic moment in an external magnetic field. We conjugated the nanoclusters with monoclonal antibodies specific for tumor biomarkers of breast, colon and skin cancers and demonstrated molecular specific optical and photoacoustic (PA) imaging with high sensitivity. We carried out experiments in whole blood from a normal volunteer spiked with various amounts of cancer cells. It was shown that cell capture efficiency exhibits a linear behavior from 5 to 500 cells per 2.5 mL of the whole blood. Furthermore, we demonstrated that molecular targeted nanoclusters can be used for simultaneous magnetic capture and PA detection of cancer cells in whole blood with greater than 90% capturing efficiency with no laborious processing steps that are commonly used in other cancer cell capture and enumeration assays. The magneto-plasmonic nanoparticle platform is being tested in blood samples of cancer patients with metastatic disease with a very good capture efficiency as compared to FDA approved CellSearch system. Our immunotargeted nanoparticles can be easily adapted to a variety of biomarkers, targeting both surface receptor molecules and intracellular biomarkers of epithelialderived cancer cells. In this presentation we will explore the opportunities afforded by the hybrid magneto-plasmonic nanoparticles and PA imaging for the development of a low cost simple and nearly real-time assays for capture, separation and enumeration of rare cells.

Request more information
Company product page


Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!