Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

In-vivo Single Cell Transcript Analyses for Systems Modelling
SELECTBIO

To investigate the importance of minimal residual disease of BCR-ABL expressing cells chronic myelogenous leukemia (CML) was assessed using single cell molecular analytical approaches. CML is believed to occur as a consequence of the clonal expansion of leukemic stem cells and to be maintained by an expanding population of hematopoietic stem cells that have acquired a BCR-ABL fusion gene. Recent studies indicate that primitive CML cells are less responsive to tyrosine kinase inhibitors and are a reservoir for the emergence of tyrosine kinase resistant subclones. It also has been reported that BCR-ABL mediated cell adhesion may be involved in post-therapy residual disease of CML. The natural heterogeneity seen across both attached and unattached BCR-ABL expressing populations has been investigated. The study developed a means to utilize flow-assisted cell sorting of cell lines expressing BCR-ABL to derive individual attached and unattached cell sub-populations. Using a homogenous extraction procedure, cells individually flow sorted into microtitre plates were subjected to combinations of ABL and BCR-ABL RT qPCR, and also phosphorylated BCR-ABL protein was assessed using the proximity ligation assay and revealed the existence of lowly and highly BCR-ABL expressing cell line populations. The implications of this study will be discussed along with newly derived systems models and in-vivo sample procedures employing AFM.

Request more information
Company product page


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!