Satellite Banner
Technology Networks Header
Friday, August 29, 2014
 
Register | Sign in
Home Page > Videos > 3D Organotypic Liver Cultures and their Application in Predictive Toxicology
  Videos

Return

3D Organotypic Liver Cultures and their Application in Predictive Toxicology
SELECTBIO

3D cultivation allows organotypic microtissue formation ensuring cell-cell contacts and contacts to the extracellular matrix. The communication between cells at tight junctions and across extracellular matrix induces and maintains cellular differentiation, functionality and viability. 3D cell cultivation techniques can tremendously improve studies on drug metabolism, drug toxicity especially long-term repeated dose effects. Using a high-throughput 3D cultivation system, we produced 3D organotypic cultures of human hepatic cells using a 96 well plate based hanging drop method. This method allows scaffold-free reorganization of cells under the force of gravity. We show that the production of 3D organotypic cultures of various hepatic cell lines and primary liver cells is possible (Mueller et al., 2011, 2013). The hepatic cells in these 3D cultures were analyzed for viability and functionality. We show that the organotypic cultures maintain high liver-specific function over 3 weeks of culture (Gunness et al., 2013). The effects of several compounds (acetaminophen, aflatoxin B, valproic acid, chlorpromazine, troglitazone and rosiglitazone) were monitored and compared. Currently we are using this system for mechanistic studies. In conclusion, better functionality of 3D systems improves the prediction of toxicity and will have impact in the changed paradigm of drug screening.

Request more information
Company product page



For access to this article, enter your email address to instantly recieve a Password Reset link.

Please enter your email address below:

Existing users please Sign In here. Don't have an account? Register Here for free access.

Don't have an account? | Register Here

Scientific News
Watching Molecules ‘Dance’ in Real Time
Trapping light at the nanoscale enables real-time monitoring of individual molecules bending and flexing may aid in our understanding of how changes within a cell can lead to diseases such as cancer.
Repressing the Repressors May Drive Tissue-Specific Cancers
Stowers scientists establish Drosophila and mammalian models to study mutations found in pediatric brain tumors.
Genetic Basis for Rabbit Domestication Revealed
Research presents key findings in the DNA make-up of the common mammal’s brain and nervous system, which determines how wild rabbits were genetically transformed to domestic rabbits.
Fighting Prostate Cancer with a Tomato-Rich Diet
New research suggests that men who eat over 10 portions of tomatoes a week have an 18% lower risk of developing prostate cancer.
Scientists Looking Across Human, Fly and Worm Genomes Find Shared Biology
Studies reveal powerful commonalities in biological activity and regulation among species.
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
NIH to Launch Human Safety Study of Ebola Vaccine Candidate
Trial is First in Series of Accelerated Safety Studies of Ebola Vaccines.
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Detecting and Identifying Candida Species in Blood Samples of Critically Ill Paediatric Patients
The study aimed to develop a multiplex nested PCR method to detect and identify seven Candida species in peripheral blood samples of critically ill paediatric patients.
Cancer-Fighting Drugs Might Also Stop Malaria Early
A number of compounds have been identified which could be used to fight malaria.
Scroll Up
Scroll Down
Skyscraper Banner
Skyscraper Banner
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn
Go to LabTube.tv