Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

Library Design for Tackling Protein-protein Interactions: The 2P2I Approacha
SELECTBIO

In the last decade, the inhibition of protein-protein interactions (PPI) has emerged from both academic and private research as a new way to modulate protein networks. Due to the implication of PPI in numerous diseases, inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market. However, in silico design of such compounds still remains challenging. We have developed 2P2IDB, a hand-curated structural database dedicated to PPI with known orthosteric inhibitors. Using structural knowledge from the recent success stories our goal is to derive some common principles to help future target selection by assessing the druggability of PPI and to accelerate the process of drug discovery by improving the quality of chemical libraries dedicated to PPI. Analysis of the small molecule inhibitors present in 2P2IDB led us to propose the ‘rule-of-four’ as a guideline to characterize PPI inhibitors. Using dedicated support vector machine approaches, we have developed 2P2IHUNTER, a tool for filtering potential orthosteric PPI modulators from large collections of compounds (article under review). This innovative tool has been applied to a set of 8.3 million compounds from the “big vendors” to design several in silico PPI focused chemical libraries. Compounds corresponding to medicinally important privileged structures, identified as core structures in numerous therapeutics, were prioritized in a medicinal oriented version of the library. The library was filtered with carbon bond saturation index (Fsp3) to escape from flatland, which resulted in a structurally-diverse chemical library of 1,683 compounds. The molecules have been purchased from the providers, stored in 364-well plates and are currently tested against a standard PPI target (MDM3/P53) to evaluate their ability to enhance hit rates in general screening campaigns. The design and molecular properties of the different in silico chemical libraries and preliminary results from the experimental screening will be discussed during the presentation.

Request more information
Company product page


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!