Corporate Banner
Satellite Banner
Technology Networks Header
Monday, September 01, 2014
 
Register | Sign in
Home Page > Videos > Webinar:
Advance drug discovery by improving dose-response curve set-up
  Videos

Return

Webinar:
Advance drug discovery by improving dose-response curve set-up

Tecan Group Ltd.

Richard Marcellus, Molecular Biologist, Ontario Institute for Cancer Research Save time and reduce waste while improving data quality for small molecule dose-response curves Titration of small molecules in DMSO is a ubiquitous part of the drug discovery workflow. Traditional methods require serial dilution which can be wasteful in terms of tips, intermediate plates and compounds. This process is also time consuming, and reproducibility from researcher to researcher can be a challenge. Traditionally, laboratories have had to accept the potential for carry-over and accumulated pipetting errors, as well as the high labor costs associated with this task. In addition, many laboratories are not performing scientifically optimal titrations, due to equipment or time restrictions. For example, in vitro drug-drug interaction experiments are often desired, but are too complicated to perform routinely. Low- and medium-throughput laboratories, such as therapeutic or lead optimization departments, cannot always justify the purchase of large automation equipment. Not only can the cost of these systems be prohibitive, they can also impose undesirable limits on assay set-up, and often require specialist knowledge to maintain and program. These laboratories need an affordable solution that meets their demands for flexibility, speed and reliability. Join our webinar as we examine the potential for change in dose-response curve set-up for small molecules in DMSO, leading to time savings and dose and plate layout flexibility for drug discovery biologists. Key Learning Objectives • Explore methods to save time and reduce labor costs when setting up dose-response curves • Save precious compounds and eliminate waste of consumables and reagents • Quickly set up drug-drug interaction experiments, along with other complex plate layouts • Improve data quality in dose-response curves and decrease the number of bioassay wells required Richard C. Marcellus, Ph.D. Biochemist - Ontario Institute for Cancer Research, Toronto, Canada Richard has spent over a decade working in cancer drug discovery and has broad experience ranging from target identification, to assay development and HTS, SPR-based protein-drug interaction analysis, and drug target validation. He currently works in the Medicinal Chemistry Group at the OICR, a translational research institute. Richard runs in vitro assays in support of SAR programs, and has embarked upon a targeted screening program in patient-derived primary cancer cells. In this study drug sensitivity is being combined with RNAi and deep sequencing to identify promising anti-cancer targets.

Request more information
Company product page



For access to this article, enter your email address to instantly recieve a Password Reset link.

Please enter your email address below:

Existing users please Sign In here. Don't have an account? Register Here for free access.

Don't have an account? | Register Here

Scientific News
Single Animal to Human Transmission Event Responsible for 2014 Ebola Outbreak
NIH-funded scientist uses latest genomic technology to make discovery.
Watching Molecules ‘Dance’ in Real Time
Trapping light at the nanoscale enables real-time monitoring of individual molecules bending and flexing may aid in our understanding of how changes within a cell can lead to diseases such as cancer.
Repressing the Repressors May Drive Tissue-Specific Cancers
Stowers scientists establish Drosophila and mammalian models to study mutations found in pediatric brain tumors.
Genetic Basis for Rabbit Domestication Revealed
Research presents key findings in the DNA make-up of the common mammal’s brain and nervous system, which determines how wild rabbits were genetically transformed to domestic rabbits.
Fighting Prostate Cancer with a Tomato-Rich Diet
New research suggests that men who eat over 10 portions of tomatoes a week have an 18% lower risk of developing prostate cancer.
Scientists Looking Across Human, Fly and Worm Genomes Find Shared Biology
Studies reveal powerful commonalities in biological activity and regulation among species.
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
NIH to Launch Human Safety Study of Ebola Vaccine Candidate
Trial is First in Series of Accelerated Safety Studies of Ebola Vaccines.
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Detecting and Identifying Candida Species in Blood Samples of Critically Ill Paediatric Patients
The study aimed to develop a multiplex nested PCR method to detect and identify seven Candida species in peripheral blood samples of critically ill paediatric patients.
Scroll Up
Scroll Down
Skyscraper Banner
Skyscraper Banner
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn
Go to LabTube.tv