Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

BioAssay Ontology (BAO) and the LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse High Throughput and Cellular Profiling Assay Data
University of Miami

The lack of established and accepted standards to describe and annotate biological assays and screening results in the domain of high throughput and high content screening (HTS, HCS) is a severe limitation to utilize these valuable datasets to their maximum potential. We developed BioAssay Ontology (BAO:http://bioassayontology.org) to enable standardized description, integration and meta-­‐ analysis of various high throughput and profiling assay and screening results. BAO leverages Description Logic and Web Ontology Language to capture and formalize knowledge about assays and enable computational systems to utilize this knowledge. We illustrate our approach using data generated in the Library of Integrated Cellular Network-­‐based Signatures (LINCS) Program, a recent large-­‐scale systems biology data production and analysis effort funded by the NIH. Leveraging the ontology, we developed a semantic model to describe and integrate LINCS data. We implemented a semantic web software system, the LINCS Information FramEwork (LIFE:http://lifekb.org/) to exchange, query, and explore these datasets. Our approach facilitates the linking and classification of diverse entities, such small molecules, cellular model systems, diseases, gene and protein kinase targets, based on the underlying cellular profiling results.

Request more information
Company product page


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!